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Abstract. Gravitons and axions play an important role with regard to dark mat-
ter. Here, by appeal to the developments of Gupta and Feynman and using a novel
mathematical theory based on Ultrahyperfunctions, we are able to provide an exact,
quantum relativistic expression for the gravitons and axions self-energies. For a com-
plete explanation of Ultrahyperfunctions and their uses in Quantum Field Theory see
the book of Plastino and Rocca.
Ultrahyperfunctions (UHF) are in most cases the generalization and extension to the
complex plane of Schwartz tempered distributions. For example, in the book of Plastino
and Rocca and in the papers of Bollini et al. you can find a large number of examples
of Ultrahyperfunctions. This manuscript is an application to Einstein’s Gravity and
Dark Matter (EG) of the mathematical theory developed by Bollini et al and contin-
ued for more than 25 years by one of the authors of this paper. We will quantize
EG using the most general quantization approach, the Schwinger-Feynman variational
principle, which is more appropriate and rigorous than the popular functional integral
method (FIM). FIM is not applicable here because our Lagrangian contains derivative
couplings. We use the Einstein Lagrangian as obtained by Gupta, but we added a new
constraint to the theory. Thus the problem of lack of unitarity for the S matrix that
appears in the procedures of Gupta and Feynman disappear. Furthermore, we consid-
erably simplify the handling of constraints, eliminating the need to appeal to ghosts
for guaranteeing the unitarity of the theory.
Our theory is obviously non-renormalizable. However, this inconvenience is solved by
resorting to the theory developed by Bollini et al. This theory is based on the the-
sis of Alexander Grothendieck and on the theory of Ultrahyperfunctions. Based on
these papers, a complete theory has been constructed for 25 years that is able to quan-
tize non-renormalizable Field Theories (FT). Because we are using a Gupta-Feynman
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based EG Lagrangian and to the new mathematical theory we have avoided the use of
ghosts, as we have already mentioned, to obtain a unitary QFT of EG. Moreover the
self-energy of the graviton changes its mass and propagator upon interaction with the
axion. The mass of the graviton can increase and the bare propagator changes to the
dressed propagator. This phenomenon is measurable, but very difficult to detect since
the bare mass of the graviton is zero and that of the axion is extremely small. Also,
for the first time in the literature, we give explicit formulas for the self-energy of the
graviton, interacting and non-interacting with axions. Also, for the first time in the
literature, we present 17 graphs corresponding to those self-energies.

Keywords: Quantum Field Theory; Einstein Gravity; Axions; Dark matter; Non-
Renormalizable Theories; Unitarity; Ultrahyperfunctions.
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1 Introduction
Gravitons and axions are crucial in understanding dark matter. Utilizing advancements
by Gupta and Feynman and employing an innovative mathematical framework grounded in
Ultrahyperfunctions [1], we derive an exact quantum-relativistic formula for the self-energies
of gravitons and axions. For a detailed overview of Ultrahyperfunctions and their role in
Quantum Field Theory, refer to [2].

Ultrahyperfunctions (UHF) often represent a generalization and extension of Schwartz’s
tempered distributions into the complex domain. Numerous examples of UHF applications
are presented in our book [2] and in references [3–6]. This work applies the mathematical
theory developed by Bollini and collaborators [3–6], which has been refined over more than
25 years, to Einstein’s Gravity (EG) and its connection to dark matter. We employ the
most comprehensive quantization method, the Schwinger-Feynman variational principle [7],
which is more rigorous and suitable than the commonly used functional integral method
(FIM). The latter is not applicable here due to the presence of derivative couplings in our
Lagrangian.

Our theory builds on the Einstein Lagrangian formulated by Gupta [8–10], with an
added constraint that resolves the non-unitary S-matrix issue encountered in Gupta and
Feynman’s approaches. This adjustment eliminates the need for ghost particles to ensure
the theory’s unitarity. Although our theory is non-renormalizable, this challenge is ad-
dressed by leveraging the framework established by Bollini et al. [3–6], which is rooted in
Alexander Grothendieck’s Thesis [11] and the theory of Ultrahyperfunctions. Over the past
25 years, this approach has successfully provided a means to quantize non-renormalizable
Field Theories (FT). By combining the Gupta-Feynman-based EG Lagrangian with this ad-
vanced mathematical approach, we achieve a unitary Quantum Field Theory (QFT) of EG
without relying on ghost particles. Furthermore, interactions between gravitons and axions
result in modifications to the graviton’s mass and propagator. The graviton’s mass may in-
crease, and its bare propagator transitions to a dressed propagator. Although these changes
are observable, detection is exceedingly challenging due to the graviton’s initial mass being
zero and the axion’s mass being extraordinarily small.

The problem of infinities that appear in a QFT is one of the most important problems
that are present in it In particular, in the quantization of gravity, these infinities appear
as a consequence of multiplying two distributions at the same point in configuration space
and are translated into divergent convolutions in momentum space. These infinities emerge
when defining the Lagrangians of the QFT’s, since the products of fields that arise in them
are products of Vector Distributions (VD), or more generally, Vector Ultrahyperfunctions
(VUHF) in the quantum case and products of Ultrahyperfunctions (UHF) in the case of
the classic QFt’s. This was rigorously established by L. Schwartz in two extensive papers
published in the Annales de l’Institut Fourier, [12,13] In them Schwartz makes an extensive
and detailed description of the DVs and shows that the product of two of them is not
defined, just like the usual distributions. A VD is a continuous linear functional defined
on a space of test functions and that takes values in a Locally Convex Topological Vector
Space (LCTVS). The appearance of that product, it is what produces the appearance of the
infinities in the Lagrangians of the QFT’s and these infinities are propagated throughout
the resulting theory. In particular in the product of propagators in the phase space, or in
its convolution in the momentum space.

More than 25 years ago one of the authors of this manuscript, together with C. G. Bollini,
worked to solve this problem using a new mathematical theory: the theory of Ultrahyper-
functions [1]. It was resolved in 4 extensive papers published in IJTP, [3–6] through the
development of a new mathematical theory: the Ultrahyperfunctions convolution theory.
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The explanation for the use of Ultrahyperfunctions instead of VU is based on the fact that
L. Schwartz proved in [12,13] that the products of VD are completely determined if the
product of the corresponding distributions over the same test function space is known. To
construct this theory Schwartz was based on the theory developed by A. Grothendieck in
his thesis [11].

Ultrahyperfunctions are the generalization and extension to the complex plane of the
usual distributions defined by L. Schwartz and I. M. Guelfand and are originally known
as Ultradistributions of J. Sebastiao e Silva, since they were defined and studied by this
extraordinary Portuguese mathematician in an extensive paper published in Mathematis-
che Annalen [1]. Four very interesting papers on Ultrahyperfunctions have been published
in [14–18]. Simply put, an Ultrahyperfunction is a pair of analytic functions, one in the
upper half-complex plane and one in the lower half-complex plane separated by a strip
parallel to the horizontal axis containing the singularities of those functions. Those func-
tions must satisfy certain mathematical conditions that are explained in the references cited
above. For example, the Dirac Delta can be written as 1

2π(x+iy) in the upper half-plane and
1

2π(x−iy) integrated on the strip counter-clockwise. Furthermore, if we take y → 0 we obtain
δ(z) = − 1

2πiz which on the real axis is - 1
2π(x+i0) + 1

2π(x−i0)=δ(x). Once the convolution of
Ultrahyperfunctions is known, the product of distributions is immediately known. Having
managed to define a convolution of Ultrahyperfunctions, the infinities of the QFT’s do not
appear, and thus they are now finite, it is not necessary to regularize the integrals that
appear in them, and, furthermore, it is not necessary to renormalize said theories.

To quantize a non-renormalizable QFT is to find an appropriate product of distribu-
tions (a product in a ring with zero divisors in the configuration space) an old problem of
functional analysis successfully solved in [3–6,19]. At the same time, we keep all existing so-
lutions in the problem of running coupling constants and the renormalization group. With
that convolution the UHF space is transformed into a ring with zero-divisors. In it, one
has now defined a product between the ring-elements. Thus, any unitary-causal-Lorentz
invariant theory quantified in such a manner becomes predictive. The distinction between
renormalizable on non-renormalizable QFT’s becomes unnecessary now.

In our work we do not use counter-terms to remove infinities from the theory bf because
our convolutions are always finite. it Also we don’t need to use counter terms, since a non-
renormalizable theory involves an infinite number of them. With our convolution, that uses
Laurent’s expansions (LE) in the parameter employed to define the LE, all finite constants
of the convolutions become completely determined, eliminating arbitrary choices of finite
constants. The independent term in the Laurent expansion yields the convolution value.

Until now, the attempts to do a QFT of Einstein’s Gravity, failed because the quan-
tization of the theory was carried out in: 1) In a Hilbert space with undefined metric; 2)
The theory obtained was not unitary; 3) It was not known how to treat non-renormalizable
QFTs. The only problem with the Ultrahyperfunctions theory is that it turns out to be
extremely complex mathematically. In a first attempt to apply our theory, we achieved a
QFT of EG just considering Lorentz Invariant tempered distributions [20] through a sim-
plified version of the UHF convolution [19]. In this manuscript we have managed to make a
general QFT of EG, using the theory of UHF to full. Also, the UHF convolution has already
been used with success in [21–29].

To achieve this we have resorted to the QFT of EG developed by Suraj N. Gupta [8–10]
with a choice of an additional constraint, making a theory similar to that of Quantum
Electrodynamics. As a result, we obtain a QFT of EG that is finite and unitary to all
perturbative order This was attempted without success first by Gupta and then by Feynman,
in his Acta Physica Polonica work [30]. Also, for the first time in the literature, we give
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explicit formulas for the self-energy of the graviton, interacting and non-interacting with
axions. Also, for the first time in the literature, we present 17 graphs corresponding to
those self-energies.

In particle physics, the self-energy of a particle is a measure of the energy required to
create or destroy the particle. It is a fundamental concept in quantum field theory, which
describes the behavior of particles and forces in terms of quantum fields that permeate
all of space and time. In quantum field theory, particles are described as excitations or
disturbances in their corresponding quantum fields. These fields are constantly fluctuating,
and particles can interact with the fluctuations to create or destroy other particles. The
self-energy of a particle represents the contribution of these interactions to the total energy
of the particle. The self-energy of a particle is related to its mass and charge, and can be
calculated using Feynman diagrams, which are graphical representations of the interactions
between particles and fields. Feynman diagrams show the different ways in which a particle
can interact with its environment, and can be used to calculate the probability of different
particle interactions. The self-energy of a particle can have important physical effects, such
as changing the mass of the particle and affecting its interactions with other particles.
For example, the self-energy of the electron is responsible for the phenomenon of electron
screening, which describes how the electrons in a material can shield each other from the
electric field of an external charge.

In summary, the self-energy of a particle is a fundamental concept in quantum field
theory that describes the energy required to create or destroy the particle, and is related to
its interactions with the quantum fields that permeate all of space and time. Note that since
we are dealing with a pure four-dimensional theory, we have not considered the possibility
of including the dilaton in it.
The manuscript is organized as follows:

• In Section 2, we present Einstein’s Lagrangean used in this theory.

• In Section 3, the graviton’s self-energy is evaluated up to second order.

• In Section 4, we introduce axiones into our theory and deal with the axions-gravitons
interaction.

• In Section 5, we calculate the graviton’s self-energy in the presence of axions.

• In Section 6, we evaluate, up to second order, the axion’s self-energy.

• Section 7, is dedicated to the conclusions of this work.

• In Appendix A, we present a summary of the definition and some properties of Tem-
pered Ultradistributions.

• In Appendix B, we present a summary of the definition and some properties of Expo-
nential Ultradistributions.

• In Appendix C, we present the preliminary material needed in this paper.

• In Appendix D, we quantize the theory.

• In Appendix E, we discuss the convolution of Ultrahyperfunctions.

• In Appendix F, we obtain a mathematical formula used in this paper.
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2 The Gupta-Feynman based Lagrangian of Einstein’s
QFT

The graviton is a hypothetical elementary particle that is believed to be the carrier of the
gravitational force in a quantum mechanical framework. According to the Standard Model
of particle physics, which describes the behavior of all known elementary particles and forces,
the gravitational force is mediated by a particle called the graviton, which is expected to
have zero mass and spin 2.

The idea of the graviton was first proposed in the 1930s by physicists like Paul Dirac and
Frits Zernike, who were trying to unify quantum mechanics with general relativity, the theory
of gravity developed by Albert Einstein. In general relativity, gravity is described as the
curvature of spacetime caused by the presence of massive objects. However, this description
is incomplete because it does not take into account the quantum nature of matter and forces.

The graviton is expected to have extremely weak interactions with matter, making it
very difficult to detect directly. However, the indirect effects of gravitons can be observed in
the behavior of massive objects such as planets, stars, and black holes. Gravitational waves,
which were detected for the first time in 2015 by the Laser Interferometer Gravitational-
Wave Observatory (LIGO), provide strong evidence for the existence of gravitons.

The search for the graviton is ongoing, and experimental efforts are focused on detecting
the tiny fluctuations in spacetime caused by the passage of gravitons. If the graviton is
discovered, it would be a major breakthrough in our understanding of the fundamental
forces of nature, and would provide important insights into the behavior of black holes,
the evolution of the universe, and the nature of spacetime itself. According to Gupta, the
Lagrangian of EG is given by [8–10]:

LG =
1

κ2

[
R
√
|g| − 1

2
ηµv∂αh

µα∂βh
vβ

]
, (1)

where ηµν = diag(1, 1, 1,−1) and hµν =
√
|g|gµν . The effect of the second term in (1) is to

fix the gauge. We affect now the linear approximation,

hµv = ηµv + κϕµv, (2)

where κ2 is the gravitation’s constant and ϕµv the graviton field. We write then,

LG = LL + LI , (3)

where
LL = −1

4

[
∂λϕµv∂

λϕµv − 2∂αϕµβ∂
βϕµα + 2∂αϕµα∂βϕ

µβ
]
, (4)

and, up to 2nd order, one has [8–10],

LI = −1

2
κϕµv

[
1

2
∂µϕ

λρ∂vϕλρ + ∂λϕµβ∂
βϕλv − ∂λϕµρ∂λϕρv

]
, (5)

where we have made use of the constraint,

ϕµµ = 0. (6)

This constraint is required in order to satisfy gauge invariance [31] As a consequence, the
equation of motion of the graviton is given by,

□ϕµv = 0. (7)
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The solution of the previous equation is given by,

ϕµv =
1

(2π)
3
2

∫ [
aµv(k⃗)√

2k0
eikµx

µ

+
a+µv(k⃗)√

2k0
e−ikµx

µ

]
d3k, (8)

with k0 = |⃗k|.

3 The exact self-energy of the graviton
To evaluate the self-energy (SE) of the graviton, we make use of the generalized Feynman
parameters. This is,

1

AαBβ
=

Γ(α+ β))

Γ(α)Γ(β)

∫ 1

0

xα−1(1− x)β−1

[Ax+B(1− x)]α+β
dx. (9)

We now make use of the interaction Hamiltonian HI . Note that the Lagrangian contains
derivative interaction terms,

HI =
∂LI

∂∂0ϕµν
∂0ϕµν − LI . (10)

A typical SE term has the form,

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)λ−1 ∗ kα3

kα4
(ρ− i0)λ−1, (11)

where ρ = k21 + k22 + k23 − k20, A = (p − k)2 − i0, α = 1 − λ, B = ρ − i0, and β = 1 − λ.
As we already said, to evaluate the integral, we use the Feynman parameters. After a Wick
rotation, we obtain,

kα1
kα2

(ρ− i0)1−λ ∗ kα3
kα4

(ρ− i0)1−λ = i

∫ 1

0

x−λ(1− x)−λdx

× Γ(2− 2λ)

Γ2(1− λ)

∫
(pα1 − kα1)(pα2 − kα2)pα3pα4

[(p− kx)2 + a]2−2λ
d4p.

(12)

Here we have,
a = k2x(1− x). (13)

After the variables-change u = p− kx, we find,

kα1kα2(ρ− i0)λ−1 ∗ kα3kα4(ρ− i0)λ−1 = i

∫ 1

0

x−λ(1− x)−λdx

× Γ(2− 2λ)

Γ2(1− λ)

∫
f(α1, α2, α3, α4, x, u)

(u2 + a)2−2λ
d4p, (14)

where f has the form,

f(α1, α2, α3, α4, x, u) =
1

24
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]u4

+
1

4
[ηα1α2

kα3
kα4

(1− x)2 + ηα1α3
kα2

kα4
x(x− 1)

+ ηα1α4kα2kα3x(x− 1) + ηα2α3kα1kα4x(x− 1)



28 Mir Hameeda et al.

+ ηα2α4
kα1

kα3
x(x− 1) + ηα3α4

kα1
kα2

(1− x)2]u2

+ kα1kα2kα3kα4x
2(x− 1)2. (15)

Evaluating the integral (15) we obtain the following result,

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1 = −3iπ 3
2 22λ(ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
)

Γ (3 + λ)
2
Γ (1− 2λ) Γ

(
1
2 + λ

)
Γ (1− λ)2 Γ (6 + 2λ) Γ (3 + 2λ)

Γ (λ) (ρ− i0)2+2λ

+ iπ
3
2 22λ(ηα1α2kα3kα4 + ηα3α4kα1kα2)

Γ (4 + λ)
2
Γ (2 + λ) Γ (1− 2λ) Γ

(
1
2 + λ

)
Γ (1− λ)2 Γ (6 + 2λ) Γ (2 + 2λ)

Γ (λ) (ρ− i0)1+2λ

− iπ 3
2 22λ(ηα1α3kα2kα4 + ηα1α4kα2kα3 + ηα2α3kα1kα4 + ηα2α4kα1kα3)

Γ (4 + λ)
2
Γ (2 + λ) Γ (1− 2λ) Γ

(
1
2 + λ

)
Γ (1− λ)2 Γ (6 + 4λ) Γ (2 + 2λ)

Γ (λ) (ρ− i0)1+2λ

− iπ 3
2 22λ−1kα1

kα2
kα3

kα4

Γ (3 + λ)
2
Γ (1− 2λ) Γ

(
1
2 + λ

)
Γ (1− λ)2 Γ (6 + 2λ) Γ (1 + 2λ)

Γ (λ) (ρ− i0)2λ. (16)

3.1 Self-Energy evaluation for λ = 0

To evaluate SE we must do the Laurent expansion of the preceding result around λ = 0,
according to (75) of Appendix C. We obtain like this,

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1 = −i π
2

5!λ

{
6(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)ρ2

− [6(ηα1α2
kα3

kα4
+ ηα3α4

kα1
kα2

) − 4(ηα1α3
kα2

kα4
+ ηα1α4

kα2
kα3

+ ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)] ρ+ 2kα1
kα2

kα3
kα4
}

− i6π2

5!
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)

[
ln ρ2 − 137

30

]
ρ2

+ i
π2

5!

{
3

2
(ηα1α2kα3kα4 + ηα3α4kα1kα2)

[
ln ρ2 − 56

15

]
− (ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+ ηα2α4
kα1

kα3
)

[
ln ρ2 − 97

30

]}
ρ

− i
2π2

5!
kα1kα2kα3kα4

[
ln ρ2 − 47

30

]
+

∞∑
n=1

anλ
n

}
. (17)

The exact value of the convolution is the independent term of λ in (16). So we get,

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)−1 ∗ kα3

kα4
(ρ− i0)−1

= − i6π
2

5!
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)

[
ln ρ2 − 137

30

]
ρ2

+ i
π2

5!

{
3

2
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln ρ2 − 56

15

]
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− (ηα1α3kα2kα4 + ηα1α4kα2kα3 + ηα2α3kα1kα4 + ηα2α4kα1kα3)

[
ln ρ2 − 97

30

]}
ρ

− i2π
2

5!
kα1kα2kα3kα4

[
ln ρ2 − 47

30

]
. (18)

We have to deal with 1296 diagrams of this kind. For simplicity, to make an example of a
graph of the self-energy we will consider the momentums equal to k1.

2 4 6 8 10
rho

-2000

-1500

-1000

-500

Im(SigmaG1111)

Figure 1: Plot of ℑ[ΣG1111] versus ρ. (Off-shell mass)

2 4 6 8 10
k1

-2.0×106

-1.5×106

-1.0×106

-500000

Im(SigmaG1111)

Figure 2: Plot of ℑ[ΣG1111] versus k1. (Off-shell mass)

Example of the self-energy with k1 = k3, and k2 = k4 .

4 Including Axions into the theory
The axion is a hypothetical elementary particle that was proposed in 1977 by Roberto Peccei
and Helen Quinn [32] to solve a problem in the Standard Model of particle physics called the
strong CP problem. The strong CP problem arises because the strong nuclear force, which
binds quarks together to form protons and neutrons, seems to violate a symmetry known as
CP symmetry. CP symmetry combines charge conjugation (C) and parity (P) symmetries,
which are both fundamental symmetries of nature, and requires that the laws of physics be
the same for particles and their antiparticles and for left-handed and right-handed particles.

To explain the strong CP problem, Peccei and Quinn proposed a new symmetry called
the Peccei-Quinn symmetry that would require the existence of a new particle, the axion.
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1 2 3 4 5
k1

-14

-12

-10

-8

-6

-4

-2

Im(SigmaG1110)

Figure 3: Plot of ℑ[ΣG1110] versus k1, with k1 = k2 = k3, ρ = −M2
0 and M0 = 1. This is

the off-shell mass bradyonic mode.

1 2 3 4 5
k0

5

10

15

20

Im(SigmaG1110)

Figure 4: Plot of ℑ[ΣG1110] versus k0, with k1 = k2 = k3, ρ = M2
0 and M0 = 1. This is the

off-shell mass tachyonic mode mode.

The axion would have very low mass (within a certain range) and weak interactions with
other particles, making it difficult to detect. However, it would have important implications
for astrophysics and cosmology, as it could be a candidate for dark matter, the invisible
substance that makes up a significant fraction of the total matter in the universe. As the
Dark Matter theory evolved, several experts concluded that the axion could be a candidate
for a component of dark matter. It is for this reason that we have included axions in our
theory. Thus we have now axions interacting with the graviton. The Lagrangian becomes,

LGM =
1

κ2

[
R
√
|g| − 1

2
ηµv∂αh

µα∂βh
vβ

]
− 1

2

[
hµv∂µϕ∂vϕ+

√
|g|m2ϕ2

]
. (19)

The complete Lagrangian now has the form,

LGM = LL + LI + LLM + LIM , (20)

where
LLM = −1

2

[
∂µϕ∂

µϕ+m2ϕ2
]
, (21)

so that LIM becomes the interaction Lagrangian for the axion-graviton action,

LIM = −1

2
κϕµν∂µϕ∂νϕ. (22)
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Figure 5: Plot of ℑ[ΣG1212] versus (k1, k2). (Off-shell mass)

Figure 6: Plot of ℑ[ΣG1110] versus (k1,M0). Off-shell mass bradyonic mode

The new term in the interaction Hamiltonian is,

HIM =
∂LIM

∂∂0ϕ
∂0ϕ− LIM . (23)
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Figure 7: Plot of ℑ[ΣG1110] versus (k0,M0). Off-shell mass tachyonic mode

5 The complete Self-Energy of the Graviton
To evaluate the complete SE, we again resort to generalized Feynman parameters, only in
this case the calculation is more complex,

1

AαBβCγDδ
=

Γ(α+ β + γ + δ))

Γ(α)Γ(β)Γ(γ)Γ(δ)
×

∫ 1

0

∫ 1

0

∫ 1

0

xα−1(1− x)β−1xα+β−1
1 (1− x1)γ−1xα+β+γ−1

2 (1− x2)δ−1

{{[Ax+B(1− x)]x1 + C(1− x1)}x2 +D(1− x2)}α+β+γ+δ
dx dx1 dx2, (24)

where

A = (p− k)2 +m2 − i0, α = 1,

B = (p− k)2 − i0, β = −λ,
C = ρ+m2 − i0, γ = 1,

D = ρ− i0, δ = −λ.

The new contribution to the SE of the graviton due to the presence of the axions is given
by,

ΣGMα1α2α3α4(k) = kα1kα2(ρ+m2 − i0)−1 ∗ kα3kα4(ρ+m2 − i0)−1. (25)

After a Wick rotation we obtain,

kα1kα2(ρ− i0)λ(ρ+m2 − i0)−1 ∗ kα3kα4(ρ− i0)λ(ρ+m2 − i0)−1 =

i

∫ 1

0

∫ 1

0

∫ 1

0

(1− x)−λ−1x−λ
1 x1−λ

2 (1− x2)−λ−1dx dx1 dx2×

Γ(2− 2λ)

Γ2(−λ)

∫
pα1

pα2
(kα3

− pα3
)(kα4

− pα4
)

[(p− kx1x2)2 + a]2−2λ
d4p, (26)
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where
a = k2x1x2(1− x1x2) +m2.(xx1x2 + x2 − x1x2). (27)

After the variables-change u = p− kx1x2 we find,

kα1
kα2

(ρ− i0)λ(ρ+m2 − i0)−1 ∗ kα3
kα4

(ρ− i0)λ(ρ+m2 − i0)−1 =

i

∫ 1

0

∫ 1

0

∫ 1

0

(1− x)−λ−1x−λ
1 x1−λ

2 (1− x2)−λ−1dx dx1 dx2×

Γ(2− 2λ)

Γ2(−λ)

∫
f(α1, α2, α3, α4, x1, x2, u)

(u2 + a)2−2λ
d4p, (28)

where f is given by,

f(α1, α2, α3, α4, x1, x2, u) =
1

24
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]u4

+
1

4
[ηα1α2kα3kα4(1− x1x2)2 + ηα1α3kα2kα4x1x2(x1x2 − 1)

+ ηα1α4
kα2

kα3
x1x2(x1x2 − 1) + ηα2α3

kα1
kα4

x1x2(x1x2 − 1)

+ ηα2α4
kα1

kα3
x1x2(x1x2 − 1) + ηα3α4

kα1
kα2

(1− x1x2)2]u2

+ kα1kα2kα3kα4(x1x2)
2(x1x2 − 1)2. (29)

Evaluating the first integral in p and x we obtain for example:

iπ2

4
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]×

Γ(−2− 2λ)

Γ(1− λ)Γ(−λ)

∫ 1

0

∫ x1

0

x−3−λ
1 y3+λ(x− y)−1−λ[k2x1(1− y) +m2]2+2λ

F

(
−2− 2λ,−λ; 1− λ; m2x1

k2x1(1− y) +m2

)
dx1dy. (30)

Since the integral is convergent at λ = 0 using our theory, which partly uses Guelfand’s
regularization [33], we obtain,

iπ2

64
[ηα1α2ηα3α4+ηα1α3ηα2α4+ηα1α4ηα2α3 ]×

∫ 1

0

∫ x1

0

x−3
1 y3(x−y)−1[k2x1(1−y)+m2]2dx1dy.

(31)
When evaluating this last integral we have,

−iπ2

64
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]

(
5

2
ρ2 + 4m2ρ+

9

4
m4

)
. (32)

The other integrals are calculated in a similar way. The end result is,

kα1kα2(ρ+m2 − i0)−1 ∗ kα3kα4(ρ+m2 − i0)−1 =

−iπ2

64
[ηα1α2

ηα3α4
+ ηα1α3

ηα2α4
+ ηα1α4

ηα2α3
]

(
5

2
ρ2 + 4m2ρ+

9

4
m4

)
+

iπ2

8
[ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
]

(
41

400
ρ− 3

2
m2

)
+
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iπ2

8
[ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+ ηα2α4
kα1

kα3
]

(
103

900
ρ+

35

144
m2

)
. (33)

We have to deal with 1 diagram of this kind.
Accordingly, our desired self-energy total is a combination of ΣGα1α2α3α4

(k) and ΣGMα1α2α3α4
(k).

For simplicity, to make an example of a graph of the self-energy we will consider the mo-
mentums equal to k1, and m = 1.

2 4 6 8 10
rho

-100

-80

-60

-40

-20

Im(SigmaGM1111)

Figure 8: Plot of ℑ[ΣGM1111] versus ρ. (Off-shell mass)

2 4 6 8 10
k1
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-25000

-20000

-15000

-10000
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Im(SigmaGM1111)

Figure 9: Plot of ℑ[ΣGM1111] versus k1. (Off-shell mass)

2 4 6 8 10
m

-10000

-8000

-6000

-4000

-2000
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Figure 10: Plot of ℑ[ΣGM1111] versus m. (Off-shell mass)
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k1

-60

-40

-20

Im(SigmaGM1110)

Figure 11: Plot of ℑ[ΣGM1110] versus k1, with k1 = k2 = k3, ρ = −M2
0 , M0 = 1 and m2 = 1

(Off-shell mass bradyonic mode)
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k0
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-8
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-4

-2

Im(SigmaGM1110)

Figure 12: Plot of ℑ[ΣGM1110] versus k0, with k1 = k2 = k3, ρ = M2
0 = 1 and m2 = 1

(Off-shell mass tachyonic mode)

Figure 13: Plot of ℑ[ΣGM1212] versus (k1, k2).



36 Mir Hameeda et al.

Figure 14: Plot of ℑ[ΣGM1111] versus (ρ,m).

Figure 15: Plot of ℑ[ΣGM1111] versus (k1,m).

6 Self Energy of the Axion
We now proceed to evaluate the SE of the axion. A typical term of the self-energy is,

Σα1α2
(k) = kα1

kα2
(ρ+m2 − i0)−1 ∗ (ρ− i0)−1. (34)

In four dimensions one has,

pα1
pα2

(ρ+m2 − i0)−1 ∗ (ρ− i0)−1] =

∫
pα1pα2

(p2 +m2 − i0)[(p− k)2 − i0]
d4p. (35)
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Figure 16: Plot of ℑ[ΣGM1110] versus (k1,M0) with k1 = k2 = k3, ρ = −M2
0 and m = 1

(Off-shell mass bradyonic mode)

Figure 17: Plot of ℑ[ΣGM1110] versus (k0,M0) with k1 = k2 = k3, ρ = M2
0 and m = 1

(Off-shell mass tachyonic mode)

With the Feynman generalized parameters used above we obtain,

kα1
kα2

(ρ+m2 − i0)−1(ρ− i0)λ ∗ (ρ− i0)λ−1 =

i
Γ(2− 2λ)

Γ(−λ)Γ(1− λ)

∫ 1

0

(1− x)−1−λx−λ
1 (1− x)−λ

∫
pα1pα2

[(p− kx1)2 + a]2−2λ
d4kdx, (36)
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where
a = m2x(1− x1) + k2x1(1− x1). (37)

We evaluate the integral (36) and find,

kα1
kα2

(ρ+m2 − i0)−1 ∗ (ρ− i0)−1 =
iηα1α2

π2m2

8
. (38)

7 Discussion
In this paper we have performed the Quantum Field Theory of Einstein’s gravity and dark
matter using a very advanced mathematical theory: the Lorentz Invariant Ultrahyperfunc-
tions convolution theory [3–6]. It is nothing more than having defined a product in a ring
with divisors of zero in the configuration space. This theory is not a regularization method.
It is a theory apt to quantize non-renormalizable QFT’s. More relevant bibliography on the
subject are the references [16–18,27–29,34–43].

Since the functional integral is not a suitable mathematical tool to perform the quanti-
zation of a theory that contains Ultrahyperfunctions, we have resorted to the more general
quantization method for the QFT ’s known until now. The variational principle of Feynman
and Schwinger. The resulting QFT is finite, unitary, and Lorentz Invariant. As an example
of the power of the theory used, we have calculated the SE of the graviton, adding to it the
presence of dark matter, represented in this case by axions. It should also be noted that we
have added to the QFT of the Gupta-Feynman EG, an additional constraint The addition
of this new constraint allows us to make a unitary QFT of the EG. Also, for the first time in
the literature, we give explicit formulas for the self-energy of the graviton, interacting and
non-interacting with axions. Also, for the first time in the literature, we present 17 graphs
corresponding to those self-energies. This theory still needs to be fully explored to see if
using it we can obtain new results from the references [44–47].
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1 Appendix A: Tempered Ultradistributions
1.1 Distributions of Exponential Type
For the benefit of the reader, we present here a brief description of the main properties of
Tempered Ultradistributions and of Ultradistributions of Exponential Type.
Appendices A and B of this paper were taken from our publication [38] in order to provide
an accessible explanation of Ultrahyerfunctions to readers.
Notations. The notations are almost textually taken from Ref. [34]. Let Rn (respectively
Cn) be the real (respectively complex) n-dimensional space whose points are denoted by
x = (x1, x2, . . . , xn) (resp. z = (z1, z2, . . . , zn)). We shall use the following notations,

(i) x+ y = (x1 + y1, x2 + y2, . . . , xn + yn), αx = (αx1, αx2, . . . , αxn)

(ii) x ≧ 0 means x1 ≧ 0, x2 ≧ 0, . . . , xn ≧ 0

(iii) x · y =
n∑

j=1

xjyj

(iv) | x |=
n∑

j=1

| xj |

Consider the set of n-tuples of natural numbers Nn. If p ∈ Nn, then p = (p1, p2, . . . , pn),
where pj is a natural number, 1 ≦ j ≦ n. p+q denote (p1+q1, p2+q2, . . . , pn+qn) and p ≧ q

means p1 ≧ q1, p2 ≧ q2, . . . , pn ≧ qn. xp means xp1

1 x
p2

2 . . . xpn
n . We denote by | p |=

n∑
j=1

pj

and by Dp we understand the differential operator ∂p1+p2+···+pn/∂x1
p1∂x2

p2 . . . ∂xn
pn .

For any natural number k we define xk = xk1x
k
2 . . . x

k
n and ∂k/∂xk = ∂nk/∂xk1∂x

k
2 . . . ∂x

k
n.

The space H of test functions such that ep|x||Dqϕ(x)| is bounded for any natural numbers
p and q is defined (Ref. [34]) by means of the countably set of norms:

∥ϕ̂∥p = sup
0≤q≤p, x

ep|x|
∣∣∣Dqϕ̂(x)

∣∣∣ , p = 0, 1, 2, . . . (1)

According to reference[48] H is a K{Mp} space with:

Mp(x) = e(p−1)|x|, p = 1, 2, . . . (2)

K{e(p−1)|x|} complies condition (N ) of Guelfand (Ref. [48]). It is a countable Hilbert and
nuclear space:

K{e(p−1)|x|} = H =

∞⋂
p=1

Hp, (3)

where Hp is obtained by completing H with the norm induced by the scalar product:

< ϕ̂, ψ̂ >p =

∫ ∞

−∞
e2(p−1)|x|

p∑
q=0

Dqϕ̂(x)Dqψ̂(x) dx, p = 1, 2, . . . (4)

where dx = dx1 dx2 . . . dxn.
If we take the conventional scalar product:

< ϕ̂, ψ̂ >=

∫ ∞

−∞
ϕ̂(x)ψ̂(x) dx, (5)
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then H, completed with (5), is the Hilbert space H of square integrable functions.
By definition, the space of continuous linear functionals defined on H is the space Λ∞ of
the distributions of the exponential type (Ref. [34]).
The Fourier transform of a distribution of exponential type F̂ is given by (see [1,34]):

F (k) =

∫ ∞

−∞
H[ℑ(k)]H[ℜ(x)−H[−ℑ(k)]H[−ℜ(x)]F̂ (x)eikx dx

= H[ℑ(k)]
∫ ∞

0

F̂ (x)eikx −H[−ℑ(k)]
∫ 0

−∞
F̂ (x)eikx, (6)

where F is the corresponding tempered ultradistribution (see the next subsection).
The triplet

H = (H,H,Λ∞), (7)

is a Rigged Hilbert Space (or a Guelfand’s triplet [35]).
Moreover, we have: H ⊂ S ⊂ H ⊂ S ′ ⊂ Λ∞, where S is the Schwartz space of rapidly
decreasing test functions (Ref. [36]).
Any Rigged Hilbert Space G = (Φ,H,Φ

′
) has the fundamental property that a linear and

symmetric operator on Φ, which admits an extension to a self-adjoint operator in H, has a
complete set of generalized eigenfunctions in Φ

′ with real eigenvalues.

1.2 Tempered Ultradistributions
The Fourier transform of a function ϕ̂ ∈ H is

ϕ(z) =
1

2π

∫ ∞

−∞
ϕ̂(x) eiz·x dx. (8)

Here ϕ(z) is entire analytic and rapidly decreasing on straight lines parallel to the real axis.
We call H the set of all such functions

H = F {H} . (9)

It is a Z{Mp} countably normed and complete space (Ref. [48]), with:

Mp(z) = (1 + |z|)p, (10)

H is a nuclear space defined with the norms:

∥ϕ∥pn = sup
z∈Vn

(1 + |z|)p|ϕ(z)|, (11)

where Vk = {z = (z1, z2, . . . , zn) ∈ Cn :| Imzj |≦ k, 1 ≦ j ≦ n}.
We can define the habitual scalar product:

< ϕ(z), ψ(z) >=

∫ ∞

−∞
ϕ(z)ψ1(z) dz =

∫ ∞

−∞
ϕ̂(x)ψ̂(x) dx, (12)

where
ψ1(z) =

∫ ∞

−∞
ψ̂(x) e−iz·x dx

and dz = dz1 dz2 . . . dzn.
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By completing H with the norm induced by (12) we obtain the Hilbert space of square
integrable functions.
The dual of H is the space U of tempered ultradistributions (Ref. [1,34]). Namely, a tempered
ultradistribution is a continuous linear functional defined on the space H of entire functions
rapidly decreasing on straight lines parallel to the real axis.
The set U = (H,H,U) is also a Rigged Hilbert Space. Moreover, we have: H ⊂ S ⊂ H ⊂
S ′ ⊂ U .
U can also be characterized in the following way (Ref. [34]): let Aω be the space of all
functions F (z) such that:

A) F (z) is analytic on the set {z ∈ Cn : |Im(z1)| > p, |Im(z2)| > p, . . . , |Im(zn)| > p}.

B) F (z)/zp is bounded continuous in

{z ∈ Cn : |Im(z1)| ≧ p, |Im(z2)| ≧ p, . . . , |Im(zn)| ≧ p},

where p = 0, 1, 2, . . . depends on F (z).

Let Π be the set of all z-dependent pseudo-polynomials, z ∈ Cn. Then U is the quotient
space:

C) U = Aω/Π.

By a pseudo-polynomial we denote a function of z of the form∑
s

zsjG(z1, . . . , zj−1, zj+1, . . . , zn),

with
G(z1, . . . , zj−1, zj+1, . . . , zn) ∈ Aω.

Due to these properties it is possible to represent any ultradistribution as (Ref. [34]):

F (ϕ) =< F (z), ϕ(z) >=

∮
Γ

F (z)ϕ(z) dz, (13)

where Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γn and where the path Γj runs parallel to the real axis from
−∞ to ∞ for Im(zj) > ζ, ζ > p and back from ∞ to −∞ for Im(zj) < −ζ, −ζ < −p. (Γ
surrounds all the singularities of F (z)).
Formula (13) will be our fundamental representation for a tempered ultradistribution. Some-
times use will be made of “Dirac Formula” for ultradistributions (Ref. [1]):

F (z) =
1

(2πi)n

∫ ∞

−∞

f(t)

(t1 − z1)(t2 − z2) . . . (tn − zn)
dt, (14)

where the “density” f(t) is the cut of F (z) along the real axis and satisfy:∮
Γ

F (z)ϕ(z) dz =

∫ ∞

−∞
f(t)ϕ(t) dt. (15)

While F (z) is analytic on Γ, the density f(t) is in general singular, so that the r.h.s. of (15)
should be interpreted in the sense of distribution theory.
Another important property of the analytic representation is the fact that on Γ, F (z) is
bounded by a power of z (Ref. [34]):

|F (z)| ≤ C|z|p, (16)
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where C and p depend on F .
The representation (15) implies that the addition of a pseudo-polynomial P (z) to F (z) do
not alter the ultradistribution:∮

Γ

{F (z) + P (z)}ϕ(z) dz =
∮
Γ

F (z)ϕ(z) dz +

∮
Γ

P (z)ϕ(z) dz,

But: ∮
Γ

P (z)ϕ(z) dz = 0,

as P (z)ϕ(z) is entire analytic in some of the variables zj (and rapidly decreasing),

∴
∮
Γ

{F (z) + P (z)}ϕ(z) dz =
∮
Γ

F (z)ϕ(z) dz. (17)

The inverse Fourier transform of (6) is given by:

F̂ (x) =
1

2π

∮
Γ

F (k)e−ikx dk =

∫ ∞

−∞
f(k)e−ikx dx. (18)

2 Appendix B: Ultradistributions of Exponential Type
Consider the Schwartz space of rapidly decreasing test functions S. Let Λj be the region of
the complex plane defined as:

Λj = {z ∈ C : |ℑ(z)| < j : j ∈ N} . (19)

According to Ref. [1,37] be the space of test functions ϕ̂ ∈Vj is constituted by the set of
all entire analytic functions of S for which

||ϕ̂||j = max
k≤j

{
sup
z∈Λj

[
e(j|ℜ(z)|)|ϕ̂(k)(z)|

]}
, (20)

is finite.
The space Z is then defined as:

Z =
∞⋂
j=0

Vj . (21)

It is a complete countably normed space with the topology generated by the set of semi-
norms {|| · ||j}j∈N. The topological dual of Z, denoted by B, is by definition the space of
ultradistributions of exponential type (Ref. [1,37]). Let S be the space of rapidly decreasing
sequences. According to Ref. [35] S is a nuclear space. We consider now the space of
sequences P generated by the Taylor development of ϕ̂ ∈ Z

P =

{
Q : Q

(
ϕ̂(0), ϕ̂

′
(0),

ϕ̂
′′
(0)

2
, . . . ,

ϕ̂(n)(0)

n!
, . . .

)
: ϕ̂ ∈ Z

}
. (22)

The norms that define the topology of P are given by:

||ϕ̂||
′

p = sup
n

np

n!
|ϕ̂n(0)|, (23)
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P is a subspace of S and as consequence is a nuclear space. The norms || · ||j and || · ||′p are
equivalent, the correspondence

Z⇐⇒ P, (24)
is an isomorphism and therefore Z is a countably normed nuclear space. We define now the
set of scalar products

< ϕ̂(z), ψ̂(z) >n =

n∑
q=0

∫ ∞

−∞
e2n|z|ϕ̂(q)(z)ψ̂(q)(z) dz

=

n∑
q=0

∫ ∞

−∞
e2n|x|ϕ̂(q)(x)ψ̂(q)(x) dx. (25)

This scalar product induces the norm

||ϕ̂||
′′

n = [< ϕ̂(x), ϕ̂(x) >n]
1
2 . (26)

The norms || · ||j and || · ||′′n are equivalent, and therefore Z is a countably hilbertian nuclear
space. Thus, if we call now Zp the completion of Z by the norm p given in (26), we have:

Z =

∞⋂
p=0

Zp, (27)

where
Z0 = H, (28)

is the Hilbert space of square integrable functions.
As a consequence the triplet

U = (Z,H,B), (29)
is also a Guelfand’s triplet.
B can also be characterized in the following way (Refs. [1] and [37]): let Eω be the space of
all functions F̂ (z) such that:

A) F̂ (z) is an analytic function for {z ∈ C : |Im(z)| > p}.

B)- F̂ (z)e−p|ℜ(z)|/zp is a bounded continuous function in {z ∈ C : |Im(z)| ≧ p}, where
p = 0, 1, 2, . . . depends on F̂ (z).

Let N be: N = {F̂ (z) ∈ Eω : F̂ (z) is entire analytic}. Then B is the quotient space:

C)- B = Eω/N

Due to these properties it is possible to represent any ultradistribution of exponential type
as (Ref. [34,37]):

F̂ (ϕ̂) =< F̂ (z), ϕ̂(z) >=

∮
Γ

F̂ (z)ϕ̂(z) dz, (30)

where the path Γ runs parallel to the real axis from −∞ to ∞ for Im(z) > ζ, ζ > p and
back from ∞ to −∞ for Im(z) < −ζ, −ζ < −p. (Γ surrounds all the singularities of F̂ (z)).
Formula (30) will be our fundamental representation for a ultradistribution of exponential
type. The “Dirac Formula” for ultradistributions of exponential type is (Ref. [1,37]):

F̂ (z) ≡ 1

2πi

∫ ∞

−∞

f̂(t)

t− z
dt ≡ cosh(λz)

2πi

∫ ∞

−∞

f̂(t)

(t− z) cosh(λt)
dt, (31)
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where the “density” f̂(t) is such that∮
Γ

F̂ (z)ϕ̂(z) dz =

∫ ∞

−∞
f̂(t)ϕ̂(t) dt. (32)

(31) should be used carefully. While F̂ (z) is analytic function on Γ, the density f̂(t) is in
general singular, so that the right hand side of (32) should be interpreted again in the sense
of distribution theory.
Another important property of the analytic representation is the fact that on Γ, F̂ (z) is
bounded by a exponential and a power of z (Ref. [34,37]):

|F̂ (z)| ≤ C|z|pep|ℜ(z)| (33)

where C and p depend on F̂ .
The representation (30) implies that the addition of any entire function Ĝ(z) ∈ N to F̂ (z)
does not alter the ultradistribution:∮

Γ

{F̂ (z) + Ĝ(z)}ϕ̂(z) dz =
∮
Γ

F̂ (z)ϕ̂(z) dz +

∮
Γ

Ĝ(z)ϕ̂(z) dz.

But: ∮
Γ

Ĝ(z)ϕ̂(z) dz = 0,

as Ĝ(z)ϕ̂(z) is an entire analytic function,

∴
∮
Γ

{F̂ (z) + Ĝ(z)}ϕ̂(z) dz =
∮
Γ

F̂ (z)ϕ̂(z) dz. (34)

Another very important property of B is that B is reflexive under the Fourier transform:

B = Fc

{
B
}
= F

{
B
}
, (35)

where the complex Fourier transform F (k) of F̂ (z) ∈ B is given by:

F (k) = H[ℑ(k)]
∫
Γ+

F̂ (z)eikz dz −H[−ℑ(k)]
∫
Γ−

F̂ (z)eikz dz

=

∮
Γ

{H[ℑ(k)H[ℜ(z)]−H[−ℑ(k)H[−ℜ(z)]}F̂ (z)eikz dz

= H[ℑ(k)]
∫ ∞

0

f̂(x)eikx dx−H[−ℑ(k)]
∫ 0

−∞
f̂(x)eikx dx. (36)

Here Γ+ is the part of Γ with ℜ(z) ≥ 0 and Γ− is the part of Γ with ℜ(z) ≤ 0. Using (36)
we can interpret Dirac’s Formula as:

F (k) ≡ 1

2πi

∫ ∞

−∞

f(s)

s− k
ds ≡ Fc

{
F−1 {f(s)}

}
. (37)

The inverse Fourier transform corresponding to (37) is given by:

F̂ (z) =
1

2π

∮
Γ

{H[ℑ(z)]H[−ℜ(k)]−H[−ℑ(z)]H[ℜ(k)]}F (k)e−ikz dk. (38)
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The treatment for ultradistributions of exponential type defined on Cn is similar to the case
of one variable. Thus let Λj be given as

Λj = {z = (z1, z2, . . . , zn) ∈ Cn : |ℑ(zk)| ≤ j 1 ≤ k ≤ n} , (39)

and

||ϕ̂||j = max
k≤j

 sup
z∈Λj

ej
[

n∑
p=1

|ℜ(zp)|
] ∣∣∣D(k)ϕ̂(z)

∣∣∣
 , (40)

where D(k) = ∂(k1)∂(k2) · · · ∂(kn), k = k1 + k2 + · · ·+ kn.
B

n is characterized as follows. Let Enω be the space of all functions F̂ (z) such that:

A
′
) F̂ (z) is analytic for {z ∈ Cn : |Im(z1)| > p, |Im(z2)| > p, . . . , |Im(zn)| > p}.

B
′
) F̂ (z)e

−
[
p

n∑
j=1

|ℜ(zj)|
]
/zp is bounded continuous in

{z ∈ Cn : |Im(z1)| ≧ p, |Im(z2)| ≧ p, . . . , |Im(zn)| ≧ p},

where p = 0, 1, 2, . . . depends on F̂ (z).

Let Nn be: Nn = {F̂ (z) ∈ Enω : F̂ (z) is entire analytic function at minus in one of the
variables zj , 1 ≤ j ≤ n}. Then Bn is the quotient space:

C
′
) B

n
= Enω/N

n.

We have now

F̂ (ϕ̂) =< F̂ (z), ϕ̂(z) >=

∮
Γ

F̂ (z)ϕ̂(z) dz, (41)

where Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γn and where the path Γj runs parallel to the real axis from −∞
to ∞ for Im(zj) > ζ, ζ > p and back from ∞ to −∞ for Im(zj) < −ζ, −ζ < −p. (Again
the path Γ surrounds all the singularities of F̂ (z)). The n-dimensional Dirac’s Formula is
now

F̂ (z) =
1

(2πi)n

∫ ∞

−∞

f̂(t)

(t1 − z1)(t2 − z2) . . . (tn − zn)
dt, (42)

and the “density” f̂(t) is such that∮
Γ

F̂ (z)ϕ̂(z) dz =

∫ ∞

−∞
f̂(t)ϕ̂(t) dt. (43)

The modulus of F̂ (z) is bounded by

|F̂ (z)| ≤ C|z|pe

[
p

n∑
j=1

|ℜ(zj)|
]
, (44)

where C and p depend on F̂ .
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3 Appendix C: Preliminary Materials Needed
In this paper we will not use the functional integral to quantify the gravitational field for two
reasons: 1) It does not serve to treat Ultrahyperfunctions, since it cannot take into account
the singularities that said Ultrahyperfunctions have in a strip that surrounds the real axis.
2) The interacting Lagrangean has derivative couplings of the graviton field. Instead, we
will use the most general method of quantization known, which is the Variational Schwinger-
Feynman Method [7] which is able to deal even with high order supersymmetric theories,
as exemplified by [49,50]. Such theories can not be quantized with the usual Dirac-brackets
technique.
For that purpose, we write the action for a set of fields in the form:

S[σ(x), σ0, ϕA(x)] =
∫ σ(x)

σ0

L[ϕA(ξ), ∂µϕA(ξ), ξ]dξ, (45)

where σ(x) if a space-like surface passing through the point x. σ0 is a surface at the remote
past, at which all field variations vanish. The Schwinger-Feynman variational principle
establishes that:
”Any Hermitian infinitesimal variation δS of the action induces a canonical transformation
of the vector space in which the quantum system is defined, and the generator of this
transformation is this same operator δS”.
As a consequence of this statement we obtain [7]:

δϕA = i[δS, ϕA]. (46)

Thus, for a Poincare transformation we have

δS = aµPµ +
1

2
aµvMµv. (47)

Therefore, the variation of the field is given by:

δϕa = aµP̂µϕA +
1

2
aµvM̂µvϕA. (48)

From (46), (47) and (48) we obtain

∂µϕA = i[Pµ, ϕA]. (49)

In particular µ = 0 we have:
∂0ϕA = i[P0, ϕA]. (50)

This result is used to quantize the QFT’s. In particular we will use it to quantize the EG.

4 Appendix D: The correct quantization of the theory
We need remember some usual definitions. The energy-momentum tensor is given by

Tλ
ρ =

∂L
∂∂ρϕµv

∂λϕµv − δλρL. (51)

From this definition we obtain the time-component of the four-momentum vector

P0 =

∫
T 0
0 d

3x. (52)
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Using the expression (4) of the Lagrangian of the free fields we obtain:

T 0
0 =

1

4
[∂0ϕµv∂

0ϕµv + ∂jϕµv∂
jϕµv − 2∂αϕµ0∂

0ϕµα − 2∂αϕµj∂
jϕµα

+ 2∂αϕ
µα∂0ϕ

0
µ + 2∂αϕ

µα∂jϕ
j
µ]. (53)

Consequently, from this last equation we arrive at:

P0 =
1

4

∫
k0

[
aµv(k⃗)a

+µv(k⃗) + a+µv(k⃗)aµv(k⃗)
]
d3k. (54)

We now use the equation (50) and we have

[P0, aµv(k⃗)] = k0aµv(k⃗),

[P0, a
+µv(k⃗)] = −k0a+µv(k⃗). (55)

Replacing (54) in (55) we obtain at the integral equation:

|⃗k|a+ρλ(k⃗′) =
1

2

∫
|⃗k|[aµv(k⃗), a+ρλ(k⃗′)]a+µv(k⃗) d3k. (56)

The solution of this equation is[
aµv(k⃗), a

+ρλ(k⃗′)
]
=
[
δρµδ

λ
v + δρvδ

λ
µ

]
δ(k⃗ − k⃗′). (57)

As customary, in the Gupta quantization for the graviton, the physical state |ψ > of the
theory is defined via the equation

ϕµµ|ψ >= 0. (58)

We use now the the usual definition for the graviton’s propagator

∆ρλ
µν(x− y) =< 0|T [ϕµν(x)ϕρλ(y)]|0 > . (59)

Thus the propagator then turns out to be

∆ρλ
µν(x− y) = −

i

(2π)4
(δρµδ

λ
v + δρvδ

λ
µ)

∫
eikµ(x

µ−yµ)

k2 − i0
d4k. (60)

The tensor field of the graviton is defined as:

Φ(x) = ϕρλ(x)dxρ ⊗ dxλ. (61)

The corresponding propagator results:

∆(x− y) =< 0|T [Φ(x)⊗ Φ(y)]|0 > . (62)

This is:
∆(x− y) = ∆ρλ

µν(x− y)dxρ ⊗ dxλ ⊗ dyµ ⊗ dyν . (63)

Using (54) we can write:

P0 = −1

4

∫
|⃗k|
[
aµv(k⃗)a

+µv(k⃗′) + a+µv(k⃗′)aµv(k⃗)
]
δ(k⃗ − k⃗′)d3kd3k

′
. (64)
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According (57) we get:

P0 = −1

4

∫
|⃗k|
[
2a+µv(k⃗′)aµv(k⃗) + δ(k⃗ − k⃗′)

]
δ(k⃗ − k⃗′)d3kd3k

′
. (65)

We then obtain:
P0 = −1

2

∫
|⃗k|a+µv(k⃗)aµv(k⃗)d

3k. (66)

Here where we have used the fact that the product of two deltas with the same argument
vanishes [3], i.e., δ(k⃗ − k⃗′)δ(k⃗ − k⃗′) = 0. This proves that using Ultrahyperfunctions is
here equivalent to adopting the normal order in the definition of the time-component of the
four-momentum

P0 = −1

4

∫
|⃗k| :

[
aµv(k⃗)a

+µv(k⃗) + a+µv(k⃗)aµv(k⃗)
]
: d3k. (67)

Now, we must insist on the fact that the physical state should satisfy not only Eq. (58) but
also the relation (see [8–10])

∂µϕ
µv|ψ >= 0. (68)

The resulting theory is similar to that obtained for QED, using the Guppta-Bleuler quan-
tization method. This show that the obtained theory is unitary for any finite perturbative
order. If we take into account the degrees of freedom of the theory, we conclude that we
have only one type of free graviton ϕ12.Thus we have only one type of graviton with two
possible transverse polarizations. Obviously, this happens for a non-interacting theory, as
remarked by Gupta.

4.1 Loss of unitarity if our constraint is not used
If we do NOT use the new constraint (58), we have

P0 = −1

2

∫
|⃗k|
[
a+µv(k⃗)aµv(k⃗)−

1

2
a+µ
µ (k⃗)avv(k⃗)

]
d3k. (69)

The Feynman-Schwinger variational principle [7] now leads us to:

|⃗k|a+ρλ(k⃗
′) =

1

2

∫
|⃗k|
{
a+µv(k⃗)[aµv(k⃗), a

+
ρλ(k⃗

′)]− 1

2
a+µ
µ (k⃗)[avv(k⃗), a

+
ρλ(k⃗

′)]

}
d3k. (70)

The solution of this integral equation is now given by:[
aµv(k⃗), a

+
ρλ(k⃗

′)
]
= [ηµρηvλ + ηvρηµλ − ηµvηρλ] δ(k⃗ − k⃗′). (71)

The above is the usual graviton’s quantification. The resulting theory leads to a S matrix
that is not unitary [8–10,30].

5 Appendix E: The Convolution of two Lorentz Invari-
ant Ultrahyperfunctions

We clarify that the content of this appendix has been taken from the references [5,6] in order
to simplify the reading of the paper.



Quantum Theory of 3+1 Gravity and Dark Matter 53

In [5] formula (7.34) we have obtained a conceptually simple but rather lengthy expression
for the convolution of two Lorentz invariant tempered ultradistributions:

Hλ(ρ,Λ) =
1

8π2ρ

∫
Γ1

∫
Γ2

F (ρ1)G(ρ2)ρ
λ
1ρ

λ
2 {Θ[ℑ(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)]×

[ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]
√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}}
−

Θ[−ℑ(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+
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√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}}
− i

2
×

{[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 + Λ

ρ2 + Λ

)
+ ln

(
−i

√
ρ1 − Λ

ρ2 − Λ

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1
Λ− ρ2

)
+ ln

(
i

√
Λ + ρ1
Λ + ρ2

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ + ρ1
Λ− ρ2

)
+ ln

(√
Λ− ρ1
Λ + ρ2

)]
+

(ρ1 − ρ2)
2

[ln(−ρ1 − ρ2 + Λ)− ln(−ρ1 − ρ2 − Λ) −

ln(ρ1 + ρ2 + Λ) + ln(ρ1 + ρ2 − Λ)] + ρ2 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1
Λ + ρ2

)
+ ln

(√
Λ + ρ1
Λ− ρ2

)]
+

(ρ1 − ρ2)
2

[ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ) −

ln(−ρ1 − ρ2 + Λ) + ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ2 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}}} dρ1 dρ2. (72)
This defines an ultradistribution in the variables ρ and Λ for

|ℑ(ρ)| > ℑ(Λ) > |ℑ(ρ1)|+ |ℑ(ρ2)|.

Let B be a vertical band contained in the complex λ-plane P. Integral (72) is an analytic
function of λ defined in the domain B. Moreover, it is bounded by a power of |ρΛ|. Then,
Hλ(ρ,Λ) can be analytically continued to other parts of P. Thus, we define

H(ρ) = H(0)(ρ, i0+), (73)
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Hλ(ρ, i0
+) =

∞∑
−m

H(n)(ρ, i0+)λn. (74)

As in the other cases, we define now

{F ∗G}(ρ) = H(ρ), (75)

as the convolution of two Lorentz invariant tempered ultradistributions.
Alternatively we can use the formula obtained in [6], formula (10.1) for Ultrahyperfunctions
of exponential type:

Hγλ(ρ,Λ) =
1

8π2ρ

∫
Γ1

∫
Γ2

[2 cosh(γρ1)]
−λF (ρ1)[2 cosh(γρ2)]

−λG(ρ2)

{Θ[ℑ(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)]×

[ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]
√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}}
−

Θ[−ℑ(ρ)] {[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 − Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 − Λ)(ρ2 − Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×
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√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 + Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 + Λ)(ρ2 + Λ)

]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 − Λ)(ρ2 + Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 − Λ)(ρ2 + Λ)

]}
+

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
iπ

2

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+√

4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 + Λ)(ρ2 − Λ)− (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 + Λ)(ρ2 − Λ)

]}}
− i

2
×

{[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 + Λ

ρ2 + Λ

)
+ ln

(
−i

√
ρ1 − Λ

ρ2 − Λ

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1
Λ− ρ2

)
+ ln

(
i

√
Λ + ρ1
Λ + ρ2

)]
+

[ln(ρ1 + Λ)− ln(ρ1 − Λ)][ln(−ρ2 + Λ)− ln(−ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ + ρ1
Λ− ρ2

)
+ ln

(√
Λ− ρ1
Λ + ρ2

)]
+

(ρ1 − ρ2)
2

[ln(−ρ1 − ρ2 + Λ)− ln(−ρ1 − ρ2 − Λ) −

ln(ρ1 + ρ2 + Λ) + ln(ρ1 + ρ2 − Λ)] + ρ2 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}

[ln(−ρ1 + Λ)− ln(−ρ1 − Λ)][ln(ρ2 + Λ)− ln(ρ2 − Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1
Λ + ρ2

)
+ ln

(√
Λ + ρ1
Λ− ρ2

)]
+

(ρ1 − ρ2)
2

[ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ) −

ln(−ρ1 − ρ2 + Λ) + ln(−ρ1 − ρ2 − Λ)] + ρ1 [ln(−ρ1 − ρ2 + Λ) −

ln(−ρ1 − ρ2 − Λ)] + ρ2 [ln(ρ1 + ρ2 + Λ)− ln(ρ1 + ρ2 − Λ)]}}} dρ1 dρ2 (76)
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|ℑ(ρ)| > ℑ(Λ) > |ℑ(ρ1)|+ |ℑ(ρ2)| ; γ < min

(
π

2 | ℑ(ρ1) |
;

π

2 | ℑ(ρ2) |

)
We define

H(ρ) = H(0)(ρ, i0+) = H(0)
γ (ρ, i0+), (77)

Hγλ(ρ, i0
+) =

∞∑
−m

H(n)
γ (ρ, i0+)λn. (78)

If we take into account that singularities (in the variable Λ) are contained in a horizontal
band of width |σ0| we have:

Hγλ(ρ, i0
+) =

∞∑
−m

H
(n)
γλ (ρ, iσ)

(−iσ)n

n!
, σ > |σ0|. (79)

As in the other cases we define now

{F ∗G}(ρ) = H(ρ), (80)

as the convolution of two Lorentz invariant ultradistributions of exponential type.
Let Ĥγλ(x) be the Fourier antitransform of Hγλ(ρ, i0

+):

Ĥγλ(x) =

∞∑
n=−m

Ĥ(n)
γ (x)λn. (81)

If we define:
f̂γλ(x) = F−1{Fγλ(ρ)} = F−1{[cosh(γρ)]−λF (ρ)},

ĝγλ(x) = F−1{Gγλ(ρ)} = F−1{[cosh(γρ)]−λG(ρ)}, (82)
then

Ĥγλ(x) = (2π)4f̂γλ(x)ĝγλ(x), (83)

and taking into account the Laurent’s developments of f̂ and ĝ:

f̂γλ(x) =

∞∑
n=−mf

f̂ (n)γ (x)λn,

ĝγλ(x) =

∞∑
n=−mf

ĝ(n)γ (x)λn, (84)

we can write:
∞∑

n=−m

Ĥ(n)
γ (x)λn = (2π)4

∞∑
n=−m

(
n∑

k=−m

f̂ (k)γ (x)ĝ(n−k)
γ (x)

)
λn, (m = mf +mg), (85)

and as a consequence:

Ĥ(0)(x) =

0∑
k=−m

f̂ (k)γ (x)ĝ(n−k)
γ (x). (86)

The Feynman propagators corresponding to a massless particle F and a massive particle G
are, respectively, the following ultrahyperfunctions:

F (ρ) = −Θ[−ℑ(ρ)]ρ−1,
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G(ρ) = −Θ[−ℑ(ρ)](ρ+m2)−1, (87)

where ρ is the complex variable, such that on the real axis one has ρ = k21 + k22 + k23 − k20.
On the real axis, the previously defined propagators are given by:

f(ρ) = F (ρ+ i0)− F (ρ− i0) = (ρ− i0)−1,

g(ρ) = G(ρ+ i0)−G(ρ− i0) = (ρ+m2 − i0)−1. (88)

These are the usual expressions for Feynman propagators.
Consider first the convolution of two massless propagators. We use (88), since here the
corresponding ultrahyperfunctions do not have singularities in the complex plane. We obtain
from (72) a simplified expression for the convolution:

hλ(ρ) =
π

2ρ

∞∫∫
−∞

(ρ1 − i0)λ−1(ρ2 − i0)λ−1
[
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

] 1
2

+
dρ1 dρ2. (89)

This expression is nothing other than the usual convolution:

hλ(ρ) = (ρ− i0)λ−1 ∗ (ρ− i0)λ−1. (90)

6 Appendix F: A Mathematical Proof
According to the Ultrahyperfunctions theory we can write:∮
Γ

ln(a−z)ϕ(z)dz =
∫ ∞

−∞
[ln(a−x− i0)− ln(a−x+ i0)]ϕ(x)dx = −2iπ

∫ ∞

−∞
H(x−a)ϕ(x)dx.

(91)
So we have the correspondence:

− 1

2πi
ln(a− z)←− H(x− a). (92)

Using now the Dirac formula for Ultrahyperfunctions we obtain:

− 1

2πi
ln(a− z) = 1

2πi

∫ ∞

−∞

H(x− a)
x− z

dx =
1

2πi

∫ ∞

a

1

x− z
dx. (93)

Thus:
ln(a− z) = −

∫ ∞

a

1

x− z
dx. (94)

We then have for a > 0

ln a = −
∫ ∞

a

1

x
dx. (95)

According to the result obtained by Guelfand in [33]∫ ∞

0

1

x
dx = 0, (96)

and therefore:
ln a =

∫ a

0

1

x
dx. (97)
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