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Abstract. In this paper, we derive the black hole solution in the context of nonlinear
electrodynamics (NLED) coupled to a perfect fluid dark matter (PFDM) field. The
resulting black hole solution interpolates between the AdS Ayón–Beato–García (ABG)
black hole in the absence of the PFDM field and the Schwarzschild black hole devoid
of magnetic monopole charges and PFDM influence. A numerical investigation of
the horizon structure and thermodynamic properties, including both local and global
stability, is conducted for the obtained black hole solution. The presence of the NLED
and PFDM fields shows that the thermodynamic quantities are modified. We observe
that the behaviour of thermodynamical quantities of black holes depends on these
parameters significantly. We also discuss the stability and phase transition dependency
on these parameters.
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1 Introduction
A fundamental aspect of general relativity is identifying exact solutions to Einstein’s field
equations, a task that often proves to be highly nontrivial. Notable among these solutions
are the Schwarzschild black hole, which arises in the vacuum, and the Reissner-Nordström
black hole, which accounts for the presence of charged matter. Both of these solutions exhibit
spherical symmetry and possess a central singularity enclosed by an event horizon. However,
in contrast to these singular solutions, there also exist non-singular or regular black hole
solutions of Einstein’s field equations, which avoid the central singularity and represent a
distinct class of black hole geometries. Bardeen pioneered the concept of a central matter
core based on Sakharov and Gliner proposal [1,2] and presented a conventional formulation
of a black hole with horizons, albeit without a singularity [3], 30 years later, ABG gave
the source of the Bardeen black hole when gravity is coupled to the NLED [4]. We can
understand the features of NLED from the perspective of gravity. The concept of NLED
was initially put forth by Born and Infeld [5,6] to establish the point charge’s finite self-
energy. Furthermore, significant advancements have been realized in various settings. Since
the effective string action naturally yields a generalized Born-Infeld action, NLED also gains
significance [7–11].

The Bardeen black hole represents a spherically symmetric solution that violates the
strong energy condition. Bardeen’s pioneering work laid the foundation for discovering nu-
merous regular (non-singular) black hole solutions. Among these, a significant example is
the AdS ABG black hole, which belongs to this class of regular black hole solutions. The
ABG black hole behaves like a de-Sitter core close to its center (r → 0) and is asymptotically
flat, leading to the Reissner-Nordström black hole in the limit of large r (r → ∞). Conse-
quently, unlike the Reissner–Nordström black hole, the ABG black hole exhibits a de-Sitter
core and eventually settles with a regular, non-singular center. The AdS ABG black hole
is a generalized Bardeen solution, as it has been demonstrated to be an exact black hole
solution in the AdS spacetime framework [12–14]. The effects of magnetic charge on the
phase transition of modified ABG black holes with five parameters are also studied [15].

Thanks to the holographic principle, which says that a quantum gravity theory in AdS
space is equivalent to a conformal field theory (CFT) defined on the AdS boundary, the
Hawking-Page phase transition has been reinterpreted in terms of the dual CFT. On the
CFT side, this transition corresponds to the confinement/deconfinement phase transition in
the associated gauge field theory. The Hawking-Page transition, a first-order phase transi-
tion, holds a substantial interest in this context, particularly due to its connection with the
thermalization transition in the strongly coupled boundary CFT. We examine thermody-
namic properties and conduct a detailed analysis of its phase structure and critical behaviour
of ABG black hole in the presence of a PFDM field. Furthermore, regular black holes have
also been found within the context of modified theories of gravity, such as AdS spacetime
[16–21] Einstein-Gauss-Bonnet (EGB) gravity [22–26], 4D EGB gravity [27–32], and rotating
regular black holes [33–37]. By correctly using the NLED Lagrangian parameters, the first
law of black hole thermodynamics precisely reproduces the authors’ predicted modification
to the first law. However, certain regular black hole solutions appear to violate the area law
of black hole thermodynamics. This violation stems from inconsistency with the first law
of thermodynamics, a fundamental principle that governs the thermodynamic behaviour of
black holes. The issue can be addressed by employing a modified form of the first law of
thermodynamics, which restores consistency and resolves the apparent discrepancy in the
area law for these regular black hole solutions [38,39]. Moreover, additional regular solutions
with spherical symmetry were proposed [40–42]. Considerable progress has been made in
studying regular black hole solutions along with their properties [43–54].
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The structure of this paper is as follows: In Section 2, we explore an action that combines
Einstein’s gravity with NLED and a PFDM field, leading to the derivation of a non-singular
black hole solution. Section 3 is devoted to analysing the black hole’s thermodynamic
properties, where we find that the solution obeys a modified version of the first law of
thermodynamics. Finally, in the concluding section, we summarize the key findings and
discuss their broader implications.

2 An Exact solution of AdS ABG black hole surrounded
by PFDM and NLED fields

Let’s start with a theory of gravity that includes a PFDM field surrounding an NLED source.
The action is described by [54]

S =

∫
d4x

√
−g

[
R− 2Λ +

1

2
∇aφ∇aφ− V (φ) + LDM + L(F )

]
, (1)

where R is the curvature scalar, and Λ, representing the cosmological constant, is linked to
the AdS length l by Λ = −3/l2, φ is the phantom field, V (φ) is phantom field potential,
LDM denotes the dark matter Lagrangian density, while L(F ) represents the Lagrangian
density of the NLED [13]. The explicit expression for L(F ) is written as

L(F ) =
F (1− 3

√
2g2F )

(1 +
√
2g2F )3

− 3

2g2s

(
(2g2F )5/4

(1 +
√
2g2F )5/2

)
, (2)

where s is a free parameter related to the magnetic monopole charge (g) and black hole
mass M by s = g/2M . In the weak field limit, the nonlinear Lagrangian density (2) is
identified to Maxwell electrodynamics (L(F ) = F = FabF

ab/4) and also satisfies the weak
energy condition L(F ) < 0 and ∂L(F )/∂F > 0 [47].

The field equations for the metric tensor gab and the potential Aa corresponding to the
action (1) are

Gab + gabΛ = 2

(
∂L(F )

∂F
FacF

c
b − gabL(F )

)
+ 2∇aφ∇bφ− gab∇cφ∇cφ+ TDM

ab , (3)

∇a

(
∂L(F )

∂F
F ab

)
= 0, and ∇a

(
∗F ab

)
= 0, (4)

where Gab = Rab − 1
2gabR and TDM

ab is an energy-momentum tensor (EMT) corresponding
to the dark matter field. The TDM

ab can be approximated as diag(−ρDM, 0, 0, 0). Given a
particular ansatz, the Maxwell invariant (F ) and the NLED Lagrangian density (L(F )) are

F =
g2

2r4
and L(F ) =

g2(r2 − 3g2)

2(r2 + g2)3
+

8Mg2

(r2 + g2)5/2
. (5)

To solve the field equations, we initially express the general static spherically symmetric
metric as [54]

ds2 = −f(r)dt2 + h−1(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (6)

where f(r) = eν(r) and h(r) = e−µ(r).
In a static scenario, the component Einstein equations are expressed as

Gt
t = e−µ

(
1

r2
− µ′

r

)
− 1

r2
=

1

2
e−µφ′2 − V (φ)− ρDM , (7)



88 Amit Kumar et al.

Gr
r = e−µ

(
1

r2
+

ν′

r

)
− 1

r2
= −1

2
e−µφ′2 − V (φ) , (8)

Gθ
θ =

e−µ

2

(
ν′′ +

ν′2

2
+

ν′ − µ′

r
− ν′µ′

2

)
=

1

2
e−µφ′2 − V (φ). (9)

It is intriguing to observe that it is possible to identify solutions that meet the condition
(µ = −ν) gtt = −g−1

rr and the mass density to be ρDM = eνφ′2 > 0. Such a solution is
possible only due to the signature of the kinetic term of the phantom field, which is in
contrast to the ordinary scalar field like the quintessence dark matter, for which no such
solution exists.

We set ν = ln(1− U) and substitute it into Eqs to find the black hole solution. (7) and
(9) and, consequently, we obtain

r2U ′′ + 2ϵ rU ′ + 2(ϵ− 1)U =
g2(r2 − 3g2)

2(r2 + g2)3
+

8Mg2

(r2 + g2)5/2
, (10)

where ϵ is constant. The solution to the equation (10) is

U =
2Mr2

(r2 + g2)3/2
− g2r2

(r2 + g2)2
− λ

r
ln
( r
λ

)
− r2

l2
, (11)

where λ is a scale parameter, and the corresponding metric becomes

f(r) = 1− 2Mr2

(r2 + g2)3/2
+

g2r2

(r2 + g2)2
+

λ

r
ln
( r
λ

)
+

r2

l2
. (12)

This black hole solution (13) is characterised by the mass (M), magnetic monopole charge
(g), PFDM field parameter or scale parameter (λ) and AdS length related to the cosmological
constant via. (l =

√
−3/Λ). The solution (13) interpolates with a PFDM field surrounding

the black hole in the limit where the magnetic monopole charge is absent

f(r) = 1− 2M

r
+

λ

r
ln
( r
λ

)
+

r2

l2
, (13)

and to the AdS ABG black hole in the limit where the scale parameter (λ) is absent [14]

f(r) = 1− 2Mr2

(r2 + g2)3/2
+

g2r2

(r2 + g2)2
+

r2

l2
. (14)

It is noticed that the obtained black hole solution (13) behaves with the Reissner–Nordström
black hole asymptotically

f(r) = 1− 2M

r
+

g2

r2
+

λ

r
ln
( r
λ

)
+

r2

l2
+O

(
1

r3

)
. (15)

The circumstance allows one to estimate the location of the black hole horizon

f(r) = 1− 2Mr2

(r2 + g2)3/2
+

g2r2

(r2 + g2)2
+

λ

r
ln
( r
λ

)
+

r2

l2
= 0. (16)

However, Eq. (16) suggests that the black hole horizon’s location depends upon the parame-
ters M, g, λ and l. The Eq. (16) does not have an analytic solution. The numerical solution
is tabulated in Table 1. The pictorial view of horizon radius is realized for different values
of (g, λ) in Fig (1).

The influence of the scale parameter (λ) and magnetic monopole charge (g) on the horizon
structure of the derived black hole solution (13) exhibits the following characteristics:
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Table 1: Inner horizon (r−), outer horizon (r+) and their difference (δ = r+−r−) for different
values of magnetic charge g with fixed values of scale parameter (λ = 0.010, λ = 0.020), mass
(M = 1) and AdS length (l = 1).

λ = 0.010 λ = 0.020
g r− r+ δ g r− r+ δ

0.30 0.161 0.885 0.724 0.30 0.177 0.871 0.694
0.35 0.227 0.847 0.620 0.35 0.235 0.825 0.590
0.469 0.537 0.537 0 0.458 0.535 0.535 0

Figure 1: f(r) vs r for different values of magnetic monopole charge with a fixed value of
scale parameter (λ = 0.1&λ = 0.2).

1. The roots of the f(r) = 0 tells about the number of horizons. The resulting black hole
solution possesses three distinct horizons: the Cauchy horizon (r−), the event horizon
(r+), and the cosmological horizon (rΛ).

2. As the magnetic monopole charge (g) and the scale parameter (λ) increase, the black
hole’s size diminishes correspondingly.

3. For (λ = 0.010), the black hole possesses three horizons when (g < 0.469) and one
horizon when (g > 0.469). For (λ = 0.020), the black hole has three horizons when
(g < 0.458) and one horizon when (g > 0.458).

3 Thermodynamics and Modified First Law
The mass of the black hole solution is determined by applying the condition f(r) = 0 [54]

M+ =
(r2+ + g2)3/2

2r2+

(
1 +

g2r2+
(r2+ + g2)2

+
r2+
l2

− λ

r+
ln
[r+
λ

])
. (17)

The black hole mass simplifies to that of the AdS black hole in the presence of the PFDM
field when the magnetic monopole charge is set to zero, i.e.,

M+ =
r+
2

(
1 +

r2+
l2

− λ

r+
ln
[r+
λ

])
, (18)

and the AdS ABG black hole mass in the absence of scale parameter, and the black hole mass
interpolates with AdS massive Reissner-Nordström black hole mass in the limit g = λ = 0.
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The conventional method for calculating the Hawking temperature of the black hole is
expressed as follows:

T+ =
κ

2π
, where κ =

√
−gttgrr

2
. (19)

In the case of the obtained black hole solution, this leads to the following expression for the
temperature:

T+ =
1

4πr+

[
2r2+
l2

−
4g2r4+

(r2+ + g2)3
+

2g2r2+
(r2+ + g2)2

− λ

r+

(
1− ln

[r+
λ

])
− 2

(
1 +

r2+
l2

+
g2r2+

(r2+ + g2)2
+

λ

r+
ln
[r+
λ

])]
. (20)

In the absence of magnetic monopole charge, the temperature of this black hole simplifies
to that of the AdS black hole within the context of the PFDM field, represented as follows:

T+ =
1

4πr+

[(
2r2+
l2

− λ

r+
+

λ

r+
ln
[r+
λ

])
− 2

(
1 +

r2+
l2

+
λ

r+
ln
[r+
λ

])]
. (21)

The temperature identifies to AdS ABG black hole temperature in the absence of PFDM
field, and the black hole temperature interpolates with AdS Reissner-Nordström black hole
temperature in the limit g = λ = 0. In Fig. 2, it is evident that decreasing the Hawking
temperature decreases to attain a local minimum Tmin at horizon radii r1+ and then grows
to a local maximum Tmax at r2+ and next to attain a local minimum Tmin at horizon radii
r3+ and increase again. The Hawking temperature of the AdS black hole has a maximum at
the critical radius shown in Table 2. The Hawking temperature decreases (cf. Fig. 2) with
increases in the horizon radius r+ and λ and decreases with g. Further, the temperature
diverges when the horizon radius shrinks to zero for a Schwarzschild black hole.

Table 2: The maximum temperature (TMax
+ ) at critical horizon radius (rc) for varying values

of magnetic monopole charge (g) and scale parameter (λ) with fixed value of (l).

g = 0.50 g = 0.60
λ 0.43 0.45 0.50 0.55 0.55 0.60 0.65 0.70
T 1
+ 0.046 0.047 0.049 0.497 0.040 0.042 0.044 0.046

r1c 1.35 1.27 1.25 1.12 1.62 1.51 1.44 1.37
r2c 5.973 5.973 5.973 5.973 5.995 5.995 5.995
T 2
+ 0.0279 0.0279 0.0289 0.0284 0.0282 0.0284 0.0286 0.0293

Assuming the given black hole solution satisfies the first law of thermodynamics:

dM+ = T+dS+ + ϕdg. (22)

and, utilising the first law of thermodynamics, we can calculate the entropy of the obtained
black hole solution. With the magnetic monopole charge held constant, the first law of
thermodynamics provides the following formulation for entropy:

S+ =

∫
1

T+

dM+

dr+
dr+. (23)
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Figure 2: The upper panel illustrates the relationship between temperature and horizon
radius for various values of the magnetic monopole charge (g), with the scale parameter (λ)
held constant. Conversely, the lower panel shows the same relationship for different values
of the scale parameter (λ), while keeping the magnetic monopole charge (g) fixed.

Upon substituting the values of M+ and T+ from the black hole solution (13) into Eq. (23),
the resulting expression for entropy is:

S+ = 2πr+

[√
r2+ + g2

(
r+
2

− g2

r+

)
+

3g2

2
ln

(
r+ +

√
g2 + r2+

)]
. (24)

It is clear from this expression that the entropy deviates from the area law, implying that
the given black hole solution does not adhere to the standard form of the first law of ther-
modynamics. The deviation of the entropy (24) relies on the general structure of the EMT
of matter fields for regular black holes. The mass term is modified in the presence of NLED
with an extra factor. The modified mass is

dM =

(
1 + 4π

∫ ∞

r+

r2+
∂T 0

0

∂M+
dr+

)
= C(M+, r+) dM+, (25)

where C(M+, r+) is the correction term. The modified first law of thermodynamics, as
proposed in Refs. [24,38,39]:

C(M+, r+) dM+ = T+dS+, (26)

where T+ is Hawking temperature. The correction factor C(M+, r+) is formulated based on
the energy density T 0

0 and is expressed as

C(M+, r+) = 1 + 4π

∫ ∞

r+

r2+
∂T 0

0

∂M+
dr+. (27)
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In accordance with the modified first law of thermodynamics, the entropy is determined as

S+ = πr2+ =
A

4
. (28)

This entropy is consistent with the area law and exactly matches the entropy of the four-
dimensional Schwarzschild black hole.

We now turn our attention to the stability–both local and global–of this black hole. It is
widely recognized that the sign of the heat capacity serves as an indicator of local stability.
A positive heat capacity suggests that the system is stable, whereas a negative heat capacity
implies instability. However, Gibbs free energy describes the nature of global stability. Now,
it is a matter of calculation to obtain the heat capacity of the obtained black hole solution
(13) from the following relation:

C+ =
∂M+

∂T+
=

(
∂M+

∂r+

)(
∂r+
∂T+

)
. (29)

For the given expressions of M+ and T+, the above expression (29) leads to the heat capacity
as

C+ =
2π(g2 + r2+)

5/2(3r9+ + l2r6+(r+ + λ)g2(Ag4 +Bg2 + C)− 3g2l2(g2 + r2+))H

3r11+ − l2r8+(r+ − 2λ) +Dg8 + Eg6 + Fg4 +Gg2 + 6g2l2(g2 + r2+)
2(g2 + 2r2+)H

,

(30)
where

A = l2(λ− 2r+), B = 3r5+ − 3l2r2+(r+ − λ), (31)
C = 6r7+ + 3l2r4+(r+ − 3λ), D = −l2(5λ− 2r+), (32)
E = 9r5+ + l2r2+(11r+ − 17λ), F = 21r7+ + 3l2r4+(r+ − 7λ), (33)

G = 15r9+ + l2r6+(8r+ − 11λ), H = λ ln
[r+
λ

]
. (34)

When the magnetic monopole charge is set to zero, this heat capacity simplifies to that of
the AdS black hole surrounded by a PFDM field. In the absence of the PFDM field, it
corresponds to the heat capacity of the AdS ABG black hole. Additionally, in the limit
where both g and λ approach zero, the heat capacity of this black hole interpolates to that
of the AdS Reissner-Nordström black hole.

As shown in Fig. 3, we plotted the expression (30) for various scale parameters (λ) and
magnetic monopole charges (g) to find out how stable the heat capacity was. The plot reveals
that the heat capacity diverges at the critical points r1+, r1+ and r3+, with r1+ < r2+ < r2+
(refer to Fig. 3). The AdS ABG black hole is stable for horizon radii where r1+ < r+ < r2+
and r+ > r3+, while it becomes unstable for horizon radii within the range r+ < r1+ and
r2+ < r+ < r3+. It is evident from Fig. 3 that the AdS ABG black hole experiences three
phase transitions: the first occurs at r1+, transitioning from an unstable state to a stable
one, and the second at r2+, where it shifts from a stable state (when r1+ < r+ < r2+) back
to an unstable state (for r+ > r2+), and third r3+ >back to a unstable state to stable state.
Specifically, a phase transition takes place at r+ = r1+ = 0.48, r2+ = 1.3 and at r3+ = 5.9
for λ = 0.3, marking the points where the black hole alternates between unstable and stable
phases. Moreover, the divergence of the heat capacity at the critical point r+ = rc indicates
that this represents a second-order phase transition [55,56]. In Fig. 3, we can see that the
size of the intermediate region (stable region) decreases with increasing the (λ) and g. It is
worthwhile to mention that the size of the stable black hole decreases with increases in the
λ and g.
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Figure 3: The plot of heat capacity vs horizon radius for different values of magnetic
monopole charge (g) with a fixed value of scale parameter (λ)(upper panel) and different
values scale parameter (λ) with fixed values of magnetic monopole charge (g) (lower panel).

The stability of the system can be assessed by examining the heat capacity plots with
fixed parameters, as illustrated in Fig. 3. The heat capacity exhibits discontinuities at two
specific points, namely the critical radii r+ = r1+ and r+ = r2+. At these critical radii, the
temperature reaches both its maximum value, denoted as Tmax

1+ , and its minimum value,
referred to as Tmax

2+ .
Subsequently, we study the black hole’s global stability characterized by Gibbs free en-

ergy. The Gibbs free energy can be calculated using the definition G+ = M+−T+S+, which
is expressed as follows:

G+ =
(r2+ + g2)3/2

2r2+

(
1 +

g2r2+
(r2+ + g2)2

+
r2+
l2

− λ

r+
ln
[r+
λ

])
− r+

4

[(2r2+
l2

−
4g2r4+

(r2+ + g2)3
+

2g2r2+
(r2+ + g2)2

− λ

r+

(
1− ln

[r+
λ

]))
− 2
(
1 +

r2+
l2

+
g2r2+

(r2+ + g2)2
+

λ

r+
ln
[r+
λ

])]
. (35)

This Gibbs free energy expression simplifies to the free energy of the AdS black hole in the
presence of a PFDM field when the magnetic monopole charge is set to zero. In the absence
of the scale parameter (λ), it corresponds to the free energy of the AdS ABG black hole.
Furthermore, in the limit where both g and λ approach zero, the black hole free energy
interpolates with that of the AdS Reissner-Nordström black hole. The global stability of
the black hole is confirmed by the condition G+ ≤ 0. We will now examine the behavior of
this expression in detail.
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Figure 4: The upper panel presents a plot of Gibbs free energy as a function of horizon radii
for different values of the magnetic monopole charge (g), while maintaining a constant scale
parameter (λ). In contrast, the lower panel displays the Gibbs free energy against horizon
radii for varying scale parameter values (λ), with the magnetic monopole charge (g) held
constant.

In this analysis, we identify a global minimum (rmin) and a global maximum (rmax) that
correspond to the extremal points of the Hawking temperature. At these critical points, the
nature of the free energy undergoes a transformation. Specifically, beyond the minimum
radius rmin, the free energy rises with increasing horizon radius r+, reaching its peak at
rmax. Subsequently, beyond this maximum, the free energy begins to decline as the horizon
radius increases.

4 Results and Conclusions
We have demonstrated that nonsingular black holes coupled with a PFDM field constitute
an exact solution within the framework of gravity minimally coupled to NLED. Notably,
the well-known Schwarzschild black holes emerge as a special case when both NLED and
PFDM fields are absent.

The characteristics of this solution are defined by a thorough examination of the horizons,
which can be maximally three in number: the Cauchy horizon (r−), the event horizon (r+),
and the cosmological horizon (rΛ). We added a correction that takes regularisation into
account so that we could look more closely at the thermodynamic properties and phase
transitions of the AdS ABG black holes when the PFDM field is present.

Through this framework, we computed modified thermodynamic quantities, including
the Hawking temperature, entropy, and local and global stability measures. Divergences in
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the heat capacity, which occur at critical locations known as degenerate horizons and where
the Hawking temperature reaches a local maximum, are indicators of phase transitions.

The analysis further reveals that stable and unstable branches of the black hole are
associated with positive and negative heat capacities, respectively. Intriguingly, the smaller
black hole exhibits global stability with negative free energy and positive heat capacity,
highlighting its robustness within the thermodynamic landscape.

Acknowledgment
DVS thanks to the DST-SERB project (grant no. EEQ/2022/000824).

Authors’ Contributions
All authors have the same contribution.

Data Availability
Data sharing does not apply to this article, as no data sets were generated or analyzed
during the current study.

Conflicts of Interest
The authors declare that there is no conflict of interest.

Ethical Considerations
The authors have diligently addressed ethical concerns, such as informed consent, plagiarism,
data fabrication, misconduct, falsification, double publication, redundancy, submission, and
other related matters.

Funding
This research did not receive any grant from funding agencies in the public, commercial, or
non-profit sectors.

References
[1] A. D. Sakharov, “The Initial Stage of an Expanding Universe and the Appearance

of a Nonuniform Distribution of Matter”, Sov. Phys. JETP 22 241 (1966). DOI:
https://ui.adsabs.harvard.edu/abs/1966JETP...22..241S

[2] E. B. Gliner, “Algebraic Properties of the Energy-Momentum Tensor and Vacuum-Like
States of Matter”, Sov. Phys. JETP 22 378 (1966). DOI: 1966JETP...22..378G

[3] J. Bardeen, “Non-singular general-relativistic gravitational collapse”, Proceedings of
GR5 (Tiflis, U.S.S.R., 1968). DOI: 1968qtr..conf...87B



96 Amit Kumar et al.

[4] E. Ayon-Beato and A. Garcia, “The Bardeen Model as a Nonlinear Magnetic
Monopole”, Phys. Lett. B 493 149 (2000). DOI: https://doi.org/10.1016/S0370-
2693(00)01125-4

[5] M. Born and L. Infeld, “Foundations of the new field theory”, J. Phys. Soc. Jap. 8 307
(1934). DOI: 10.1098/rspa.1934.0059

[6] M. Born, “Nonlinear Theory of the Electromagnetic”, Field Ann. Inst. Henri Poincare
7 155 (1937).

[7] R. G. Leigh, “DIRAC-BORN-INFELD ACTION FROM DIRICHLET σ-MODEL”,
Mod. Phys. Lett. A 4 2767 (1989). DOI: 10.1142/S0217732389003099

[8] M. Banados, “Eddington-Born-Infeld action for dark energy and dark matter”, Phys.
Rev. D 77 123534 (2008). DOI: 10.1103/PhysRevD.77.123534

[9] T. Tamaki, “Black hole solutions coupled to Born-Infeld electrodynamics with derivative
corrections”, JCAP 05 004 (2004). DOI: 10.1088/1475-7516/2004/05/004

[10] T. Hagiwara, “A non-abelian Born-Infeld Lagrangian”, J. Phys. A 14 3059 (1981). DOI:
10.1088/0305-4470/14/11/027

[11] K. Jafarzade, M. Kord Zangeneh, and F. S. N. Lobo, “Shadow, deflection angle and
quasinormal modes of Born-Infeld charged black holes”, JCAP 04 008 (2021). DOI:
10.1088/1475-7516/2021/04/008

[12] E. Ayon-Beato and A. Garcia, “Non-Singular Charged Black Hole So-
lution for Non-Linear Source”, Gen. Rel. Grav. 31 629 (1999). DOI:
https://doi.org/10.1023/A:1026640911319

[13] E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to
nonlinear electrodynamics”, Phys. Rev. Lett. 80 5056 (1998). DOI: 10.1103/Phys-
RevLett.80.5056

[14] B. K. Singh, R. P. Singh, and D. V. Singh, “P − v criticality, phase structure and
extended thermodynamics of AdS ABG black holes”, Eur. Phys. J. Plus 136 575 (2021).
DOI: 10.1140/epjp/s13360-021-01562-1

[15] E. Ghasemi and H. Ghaffarnejad, “Magnetic charge effects on thermodynamic phase
transition of modified anti de Sitter Ayon-Beato-Garcia black holes with five parame-
ters”, JHAP 2 47 (2022). DOI: 10.22128/jhap.2022.524.1022

[16] B. Pourhassan and R. Campos Delgados, “Quantum Gravitational
Corrections to the Geometry of Charged AdS Black Holes”, DOI:
https://doi.org/10.48550/arXiv.2205.00238 [arXiv:2205.00238 [hep-th]].

[17] B. Pourhassan, S. Eslamzadeh, I. Sakallı, and S. Upadhyay, “Holographic Thermody-
namics of an Enhanced Charged AdS Black Hole in String Theoryā€™s Playground”,
JHAP 4(2) 15 (2024). DOI: 10.22128/jhap.2024.793.1070

[18] J. Sadeghi, S. N. Gashti, I. Sakalli, and B. Pourhassan, “Weak gravity conjecture of
charged-rotating-AdS black hole surrounded by quintessence and string cloud”, Nucl.
Phys. B 1004 116581 (2024). DOI: 10.1016/j.nuclphysb.2024.116581

https://arxiv.org/abs/2205.00238 [hep-th]


Impact of Perfect Fluid Dark Matter on the Thermodynamics of . . . 97

[19] J. Sadeghi, B. Pourhassan, S. Noori Gashti, S. Upadhyay, and E. N. Mezerji, “The
emergence of universal relations in the AdS black holes thermodynamics”, Phys. Scripta
98(2) 025305 (2023). DOI: 10.1088/1402-4896/acb40b

[20] U. Debnath, B. Pourhassan, and I. Sakalli, “Modified cosmic Chaplygin AdS black
hole”, Mod. Phys. Lett. A 37(14) 2250085 (2022). DO: 10.1142/S0217732322500857

[21] A. Uniyal, S. Kanzi, and İ. Sakallı, “Some observable physical properties of the higher
dimensional dS/AdS black holes in Einstein-bumblebee gravity theory”, Eur. Phys. J.
C 83(7) 668 (2023). DOI: 10.1140/epjc/s10052-023-11846-8

[22] S. G. Ghosh, A. Kumar, and D. V. Singh, “Anti-de Sitter Hayward black holes
in Einstein–Gauss–Bonnet gravity”, Phys. Dark Univ. 30 100660 (2020). DOI:
10.1016/j.aop.2020.168214

[23] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Bardeen-like regular black holes
in 5D Einstein-Gauss-Bonnet gravity”, Annals Phys. 412 168025 (2020). DOI:
10.1016/j.aop.2019.168025

[24] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Bardeen-like regular black holes
in 5D Einstein-Gauss-Bonnet gravity”, Annals Phys. 412, 168025 (2020). DOI:
10.1016/j.aop.2019.168025

[25] B. Singh, B. K. Singh, and D. V. Singh, “Thermodynamics, phase structure of Bardeen
massive black hole in Gauss-Bonnet gravity”, Int. J. Geom. Meth. Mod. Phys. 20 23501
(2023). DOI: 10.1142/S0219887823501256

[26] Y. Myrzakulov, K. Myrzakulov, S. Upadhyay, and D. V. Singh, “Quasinormal modes
and phase structure of regular AdS Einstein–Gauss–Bonnet black holes”, Int. J. Geom.
Meth. Mod. Phys. 20 2350 (2023). DOI: 10.1142/S0219887823501219

[27] S. Upadhyay and D. V. Singh, “Black hole solution and thermal properties in 4D
AdS Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 137 383 (2022). DOI:
10.1140/epjp/s13360-022-02569-y

[28] B. Eslam Panah, K. Jafarzade, and S. H. Hendi, “Charged 4D Einstein-Gauss-Bonnet-
AdS black holes: Shadow, energy emission, deflection angle and heat engine”, Nucl.
Phys. B 961 115269 (2020). DOI: 10.1016/j.nuclphysb.2020.115269

[29] S. G. Ghosh, D. V. Singh, R. Kumar, and S. D. Maharaj, “Phase transition of AdS
black holes in 4D EGB gravity coupled to nonlinear electrodynamics”, Annals Phys.
424 168347 (2021). DOI: 10.1016/j.aop.2020.168347

[30] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Clouds of strings in 4D
Einstein–Gauss–Bonnet black holes”, Phys. Dark Univ. 30 100730 (2020). DOI:
10.48550/arXiv.2003.14136

[31] D. V. Singh and S. Siwach, “Thermodynamics and P-v criticality of Bardeen-AdS Black
Hole in 4D Einstein-Gauss-Bonnet Gravity”, Phys. Lett. B 808 135658 (2020). DOI:
10.1016/j.physletb.2020.135658

[32] P. Paul, S. Upadhyay, and D. V. Singh, “Charged AdS black holes in 4D
Einstein–Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 138 566 (2023). DOI:
10.1140/epjp/s13360-023-04176-x



98 Amit Kumar et al.

[33] F. Ahmed, D. V. Singh, and S. G. Ghosh, “Five dimensional rotating regular black
holes and shadow”, Gen. Rel. Grav. 54 21 (2022). DOI: 10.1007/s10714-022-02906-7

[34] M. Sharif, W. Javed, “Thermodynamics of a Bardeen black hole in noncommutative”,
Can. J. Phys. 89 1027 (2011). DOI: 10.1139/p11-089

[35] D. V. Singh, M. S. Ali, and S. G. Ghosh, “Noncommutative geometry in-
spired rotating black string”, Int. J. Mod. Phys. D 27(12) 1850108 (2018). DOI:
10.1142/S0218271818501080

[36] T. G. Rizzo, “Noncommutative inspired black holes in extra dimensions”, JHEP 09 021
(2006). DOI: 10.1088/1126-6708/2006/09/021

[37] B. K. Vishvakarma, D. V. Singh, and S. Siwach, “Parameter estimation of the Bardeen-
Kerr black hole in cloud of strings using shadow analysis”, Phys. Scripta 99 025022
(2024). DOI: 10.1088/1402-4896/ad1da1

[38] R. V. Maluf and J. C. S. Neves, “Thermodynamics of a class of regular black holes with a
generalized uncertainty principle”, Phys. Rev. D 97 104015 (2018). DOI: 10.1103/Phys-
RevD.97.104015

[39] Mang-Sen Ma and Ren Zhao, “Corrected form of the first law of thermodynamics for
regular black holes”, Class. Quantum Grav. 31 245014 (2014). DOI: 10.1088/0264-
9381/31/24/245014

[40] C. Bambi and L. Modesto, “Rotating regular black holes”, Phys. Lett. B 721, 329
(2013). DOI: 10.1016/j.physletb.2013.03.025.

[41] K. A. Bronnikov, “Regular magnetic black holes and monopoles from nonlinear elec-
trodynamics”, Phys. Rev. D 63 044005 (2001). DOI: 10.1103/PhysRevD.63.044005

[42] A. Simpson and M. Visser, “Regular black holes with asymptotically Minkowski cores”,
Universe, 6 8 (2020). DOI: 10.3390/universe6010008

[43] B. K. Singh, R. P. Singh, and D. V. Singh, “Extended phase space thermodynamics
of Bardeen black hole in massive gravity”, Eur. Phys. J. Plus 135 862 (2020). DOI:
10.1140/epjp/s13360-020-00880-0

[44] S. Fernando, “Bardeen–de Sitter black holes”, Int. Journal of Mod. Phys. D 26 1750071
(2017). DOI: 10.1142/S0218271817500717

[45] D. V. Singh and N. K. Singh, “Anti-Evaporation of Bardeen de-Sitter Black Holes”,
Annals Phys. 383 600 (2017). DOI: 10.1016/j.aop.2017.06.009

[46] Md. Sabir Ali and S.G. Ghosh, “Exact d-dimensional Bardeen-de Sitter black holes and
thermodynamics”, Phys. Rev. D 98 084025 (2018). DOI: 10.1103/PhysRevD.98.084025

[47] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Exact nonsingular black holes and ther-
modynamics”, Nucl. Phys. B 981 115854 (2022). DOI: 10.1016/j.nuclphysb.2022.115854

[48] M. E. Rodrigues and H. A. Vieira, “Bardeen solution with a cloud of strings”, Phys.
Rev. D 106 084015 (2022). DOI: 10.1103/PhysRevD.106.084015

[49] G. Panotopoulos and A. Rincón, “Quasinormal modes of regular black holes with
non-linear electrodynamical sources”, Eur. Phys. J. Plus 134 300 (2019). DOI:
10.1140/epjp/i2019-12686-x



Impact of Perfect Fluid Dark Matter on the Thermodynamics of . . . 99

[50] B. K. Vishvakarma, D. V. Singh, and S. Siwach, “Shadows and quasinormal modes of
the Bardeen black hole in cloud of strings”, Eur. Phys. J. Plus 138(6) 536 (2023). DOI:
10.1140/epjp/s13360-023-04174-z

[51] D. V. Singh, V. K. Bhardwaj, and S. Upadhyay, “Thermodynamic properties, thermal
image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear
electrodynamics”, Eur. Phys. J. Plus 137 969 (2022). DOI: 10.1140/epjp/s13360-022-
03208-2

[52] D. V. Singh, A. Shukla, and S. Upadhyay, “Quasinormal modes, shadow and thermo-
dynamics of black holes coupled with nonlinear electrodynamics and cloud of strings”,
Annals Phys. 447 169157 (2022). DOI: 10.1016/j.aop.2022.169157

[53] B. Singh, D. Veer Singh, and B. Kumar Singh, “Thermodynamics, phase structure and
quasinormal modes for AdS Heyward massive black hole”, Phys. Scripta 99(2) 025305
(2024). DOI: 10.1088/1402-4896/ad1da4

[54] H. K. Sudhanshu, D. V. Singh, S. Upadhyay, Y. Myrzakulov, and K. Myrza-
kulov, “Thermodynamics of a newly constructed black hole coupled with nonlinear
electrodynamics and cloud of strings”, Phys. Dark Univ. 46 101648 (2024). DOI:
10.1016/j.dark.2024.101648

[55] S. Hawking and D. Page, “Thermodynamics of black holes in anti-de Sitter space”,
Commun. Math. Phys. 87, 577 (1983). DOI: 10.1007/BF01208266

[56] P. C. W. Davis, “The Thermodynamic Theory of Black Holes”, Proc. R. Soc. A 353,
499 (1977). DOI: 10.1098/rspa.1977.0047


	Introduction
	An Exact solution of AdS ABG black hole surrounded by PFDM and NLED fields
	Thermodynamics and Modified First Law
	Results and Conclusions

