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Abstract. In this paper, we investigate the entanglement dynamics of a two qutrits system 

interacting with a spin environment. Using negativity as the entanglement measure, we study the 

entanglement dynamics of the system.  The calculations show that in cases where the entanglement 

decays quickly, the environment will have a quantum phase transition. 
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1 Introduction 

 

Entanglement is a fundamental and key aspect of quantum mechanics that plays an essential role in 

the realms of information processing and quantum computing. In recent years, this intriguing 

phenomenon has been the subject of extensive study and investigation by many researchers in the 

field [1] . Given that quantum systems inevitably interact with their surroundings, it becomes 

increasingly important to thoroughly understand the ways in which the environment influences 

entanglement. Additionally, developing effective methods to control this entanglement during 

interactions between systems and their environments is of utmost significance [2,3]. Recent research 

efforts have notably focused on examining the environmental effects specifically on qubit-qubit, 

qutrit-qutrit, and qubit-qutrit spin systems [11-4] . In this article, we will first introduce and present the 

complete Hamiltonian for a quantum system that consists of two qutrits. These qutrits are under the 

influence of a surrounding spin chain that demonstrates threefold interactions. Following this 

introduction, we will apply the negativity criterion in order to conduct a detailed analysis of the 

dynamics associated with entanglement [14-12] . Furthermore, we will investigate how these dynamics 

depend on various parameters, thereby enhancing our understanding of the complex interplay between 

entanglement and environmental factors. 

 

2 Theoretical calculations 
 

The system comprises two non-interacting qutrits, each influenced by a spin chain with three-way 

interactions. The Hamiltonian of the system is expressed as follows: 

(1) HE = −∑ (
1+γ
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(2) HI = −(gASA
z + gBSB

z)∑ σℓ
zn

ℓ=1
. 

Here, n represents the number of particles in the spin chain, while SA
z  and SB

z  are the z-direction spin 

operators for each qutrit. gA  and gB denote the coupling strengths of spins A and B with the 

environment, α is the triplet interaction strength, η represents the magnetic field intensity, and γ 

signifies the anisotropy. We assume the initial state of the system is as follows: 

(3) |ψ〉s =
1

√3
(|00〉 + |11〉 + |22〉). 

Thus, the density matrix for the system's initial state is expressed as follows: 
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The transformed density matrix of the system, resulting from its interaction with the environment, is 

expressed as follows: 

(5) ρs(t) =
1

3
(|00〉⟨00| + |11〉⟨11| + |22〉⟨22| + F15|00〉⟨11| + F19|00〉⟨22| + F15

∗|11〉⟨00| +

F59|11〉⟨22| + F19
∗|22〉⟨00| + F59

∗|22〉⟨11|), 

where the decoherence coefficients, are obtained from the following relationship: 
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and also the magnitude of decoherence coefficients, |Fμν|, are obtained from the following 

relationship: 
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in these relationships we use 

(8)  ξ
k

λμ = 2√γ2sin2(
2πk

n
) + (λμ − cos (

2πk

n
))2), 

and 

 

(9)  Λ
k

λμ = 2(α sin (
4πk

n
) + √γ2sin2 (

2πk

n
) + (λμ − cos (

2πk

n
))
2
), 

and λμ  for μ = 1,2, … ,9 are defined as follows 

(11) λ1 = η + gA + gB, λ2 = η + gA, λ3 = η + gA − gB 

λ4 = η + gB, λ5 = η, λ6 = η − gB 

λ7 = η − gA + gB, λ8 = η − gA, λ9 = η − gA − gB 

The following relationships can be defined 
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(11) θ
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in these relationships, M =  (n −  1) / 2. Based on these relations, it can be expressed as 

(13) ρs(t) =
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We use the negativity criterion to calculate entanglement. For a quantum state with density matrix ρ, 

the negativity is defined as follows: 

(14) N(ρ) =
1

2
(‖ρTi‖

1
− 1), 

where ρTi is the partial transpose of ρ with respect to i and ‖∙‖1 denotes the trace norm. 

Thus, for the state outlined in relation (3), if we designate i as subsystem A, it can be expressed as 

follows 
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We can calculate the trace norm of this matrix by first determining the absolute values of its 

eigenvalues 

(16) {
1

3
,
1

3
,
1

3
,
2

3
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Finally, the negativity is derived as follows: 
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After simplification, we obtain the following relationship: 
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(1+
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3
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3 Results and discussion 
 

This article delves into the intricate dynamics of entanglement within a two-qutrits system that is 

influenced by an external spin environment. For the first time, we incorporate a spin chain 

characterized by three-way interactions into the total Hamiltonian of the system, allowing for a 

comprehensive analysis of the entanglement behavior. By utilizing negativity as a quantitative 

measure of entanglement, we have conducted a thorough examination of the dynamics that govern the 

entanglement within this system.  

Figures 1 through 5 illustrate that entanglement experiences a rapid decrease when the parameter η is 

set to 1. In contrast, Figure 6 reveals that this decrease in entanglement occurs at a significantly 

slower rate. Throughout Figures 1 to 6, we observe that entanglement is maximized and remains 

nearly constant when η is equal to 1.2. However, when we consider the cases where η is set to 0 and η 

is set to 0.5, we find that the entanglement fluctuates around a similar value, indicating a different 

behavior under these conditions.  

 

Figure 1:  The negativity diagram over time for fixed parameters: gA =

0.005, gB = 0.005, γ = 0.5, α = 0.5, n = 3001, and five different values of 

𝜂. 
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Figure 2:  Negativity diagram over time for fixed parameters: gA =
0.005, gB = 0.005, γ = 0.5, α = 0.5, n = 3001 and for five different values 

of η. 

 

Figure 3:  Graph of negativity in terms of time for fixed data gA =

0.005, gB = 0.005, γ = 0.5, α = −0.5, n = 3001 and for five different 

values of η. 

 

 

Figure 4:  Negativity diagram in terms of time for fixed data gA =

0.005, gB = 0.005, γ = 1, α = 0, n = 3001 and for five different values of 

η. 
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Figure 5:  Negativity diagram in terms of time for fixed data gA =

0.005, gB = 0.005, γ = 1, α = 0.5, n = 3001 and for five different values 

of η. 

 

Additionally, for the case where η is equal to 0.9, we note that entanglement decreases and shows 

fluctuations in certain instances. The variable 𝛼 plays a crucial role in influencing both the damping 

time and the frequency of these entanglement fluctuations. The observation of rapid entanglement 

decay strongly suggests the presence of a quantum phase transition occurring within the environment. 

It is particularly noteworthy that when the parameter α is set to -0.5 and γ is equal to 1, the reduction 

of entanglement at η =  1 is significantly slower compared to the reductions observed in other 

scenarios. 

 

 

Figure 6:  Negativity diagram in terms of time for fixed data gA =

0.005, gB = 0.005, γ = 1, α = −0.5, n = 3001 and for five different values 

of η. 
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In Figure 7, we illustrate the negativity as a function of time (t) alongside the variable 𝛼 for the case 

where γ is equal to 1, which corresponds to the Ising model, at the critical magnetic field strength set 

at η =  1. The maximum negativity is observed at α =  −0.5216. Within the range of −0.5216 ≤

 α ≤  0.5, we see that entanglement decreases rapidly. Conversely, in the range of −1 ≤  α ≤

 −0.5216, the time taken for this reduction increases, indicating significant delays in the decay of 

entanglement, particularly at the point where α is equal to -0.5216. 

 

 

Figure 7:  Negativity diagram in terms of 𝛼 and in terms of t for gA =

0.005, gB = 0.005, γ = 1, n = 3001, η = 1 (Ising model) 

 

Figure 8 presents negativity as a function of time and variable 𝛼 for the case where γ is equal to 0.5, 

corresponding to the XY model, also at η =  1. Here, we observe that maximum negativity occurs at 

α =  −0.2695. As we move away from this point, specifically within the range of −0.2695 ≤  α ≤

 0.5, we witness a rapid decay in entanglement. However, when we consider the range of −1 ≤  α ≤

 −0.2695, the rate of decay slows down significantly when compared to the previous range. 

Remarkably, at α =  −0.2695, the entanglement remains stable over time, indicating a unique 

characteristic of this parameter setting.  

 

 

Figure 8:  Negativity diagram in terms of 𝛼 and in terms of t for gA =

0.005, gB = 0.005, γ = 0.5, n = 3001, η = 1 (XY model) 

 

Finally, Figure 9 illustrates negativity as a function of time and variable 𝛼 for the case where γ is 

equal to 0.2, again at η =  1. The maximum negativity in this scenario is achieved at α =  −0.1206. 

In this particular case, we observe that the limit of α decreases, which subsequently leads to a delay in 
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the reduction of entanglement. This results in a significant postponement of the decay of entanglement 

at the specific point where α is equal to -0.1206, further emphasizing the complex interplay of 

parameters in this system. 

 

Figure 9:  Negativity diagram in terms of 𝛼 and in terms of t for gA =

0.005, gB = 0.005, γ = 0.2, n = 3001, η = 1 

 

4 Holographic negativity in two-qutrit systems 

 
AdS/CFT, which stands for the Anti-de Sitter/Conformal Field Theory correspondence, is a profound 

theoretical framework that was introduced by the physicist Juan Maldacena in the year 1997. This 

correspondence elucidates a fascinating relationship between two distinct yet interconnected theories: 

Anti-de Sitter Space (AdS) and Conformal Field Theory (CFT). Anti-de Sitter Space is characterized 

as a universe model that possesses a constant negative curvature, making it particularly relevant in the 

realms of string theory and quantum gravity. On the other hand, Conformal Field Theory is a type of 

quantum field theory that remains invariant under conformal transformations, which are 

transformations that preserve angles but not necessarily distances. The essence of the correspondence 

posits that a gravitational theory formulated within the context of AdS space has a direct 

correspondence to a CFT that exists on the boundary of this space. This duality not only enhances our 

understanding of complex phenomena such as quantum gravity and black holes but also sheds light on 

the intricate nature of quantum entanglement. As such, it has emerged as a vital and foundational 

concept in the landscape of modern theoretical physics, influencing various areas of research and 

inquiry. Entanglement entropy serves as a crucial measure of quantum entanglement present within a 

given system, providing insights into how much information is effectively lost when a quantum 

system is divided into two distinct parts. In the framework of quantum mechanics, entanglement 

arises when particles become correlated in such a way that their individual states become 

interdependent. This interdependence is quantified through the concept of entanglement entropy, 

which serves to encapsulate the degree of correlation between the subsystems. For a bipartite system 

that consists of two subsystems, labeled A and B, the entanglement entropy S can be calculated using 

the reduced density matrix 𝜌𝐴 associated with subsystem A. The formula for this calculation is 

expressed as follows: S(A) = −Tr(ρA log ρA), where Tr denotes the trace operation and log 

represents the logarithm function. A higher value of entanglement entropy indicates a stronger 

correlation between the subsystems, while a value of zero entropy signifies the absence of any 

entanglement. The concept of entanglement entropy is of paramount importance in various fields, 

including quantum information theory, condensed matter physics, and quantum gravity. It plays a 

particularly significant role in the study of black holes, especially in relation to the information 

paradox and the holographic principle. Understanding entanglement entropy is essential for gaining 

deeper insights into the behavior of quantum systems and the intricate correlations that exist within 

them. Holographic negativity is another important measure of entanglement in quantum systems, and 

it proves to be particularly useful for comprehending how information is encoded within holographic 

theories. In the context of a two-qutrit system, holographic negativity serves to quantify the 

entanglement that exists between two subsystems, each of which can occupy one of three possible 
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states. The ongoing research focused on holographic negativity in two-qutrit systems aims to deepen 

our understanding of the intricate connection that exists between entanglement and the geometric 

properties inherent in holographic codes. These studies meticulously analyze how the entanglement 

present between the two qutrits is intricately related to the geometric characteristics of the 

corresponding holographic code. The overarching goal of this research is to explore the dynamics and 

behaviors that emerge from the interplay between entanglement and geometry within these systems. 

This exploration involves the calculation of logarithmic negativity, which is recognized as a key 

measure of entanglement, particularly in the context of quantum error-correcting codes. Through this 

research, scientists aim to uncover new insights into the fundamental nature of quantum entanglement 

and its relationship with geometric structures, thereby contributing to the broader understanding of 

quantum information and its implications in various theoretical frameworks. In this paper, we 

consider a two-qutrits system coupled to a spin chain and study the entanglement dynamics via 

negativity. Our calculation is a direct approach and can be compared with the holographic method 

result to confirm it. Detailed explanations can be found in references [17-15] . Holographic negativity 

is used to study entanglement in quantum systems, especially in the context of holographic theories. 

Its applications include: 

Understanding Quantum Information: It helps researchers understand how information is 

stored and processed in quantum systems. 

Analyzing Quantum States: Holographic negativity can measure the entanglement between 

different parts of a quantum system, providing insights into their relationships. 

Studying Quantum Error Correction: It plays a role in developing quantum error-correcting 

codes, which are essential for maintaining the integrity of quantum information. 

Exploring Black Holes: Researchers use holographic negativity to investigate the properties of 

black holes and their connection to quantum mechanics. 

Linking Geometry and Entanglement: It helps explore how the shape and structure of space 

relate to the entanglement in quantum systems, enhancing our understanding of both fields. 

  

5 Conclusion 

 

This article explores the entanglement dynamics of a two-qutrits system within a spin environment, 

integrating a spin chain with three-way interactions into the Hamiltonian. We use negativity as a 

measure of entanglement. Figures 1 to 5 reveal a rapid decrease in entanglement for η =  1, while 

Figure 6 shows a slower decline. At η =  1.2, entanglement is maximized, but it fluctuates at η =  0 

and η =  0.5. For η =  0.9, entanglement decreases with fluctuations. The variable α influences the 

damping time and fluctuation frequency, with rapid decay indicating a quantum phase transition. 

Notably, for α =  −0.5 and γ =  1, the reduction of entanglement at η =  1 is slower. Figure 7 

depicts negativity over time and variable α for γ =  1 (Ising model) at η =  1, peaking at α =
 −0.5216. For −0.5216 ≤  α ≤  0.5, entanglement decreases rapidly, while −1 ≤  α ≤  −0.5216 

shows longer reduction times and delays at α =  −0.5216. Figure 8 presents negativity for γ =  0.5 

(XY model) at η =  1, with maximum negativity at α =  −0.2695. Deviating from this value leads 

to rapid decay, whereas −1 ≤  α ≤  −0.2695 results in a slowed decay rate. At α =  −0.2695, 

entanglement remains stable. Figure 9 shows negativity for γ =  0.2 at η =  1, peaking at α =
 −0.1206, where a lower α limit significantly delays entanglement reduction. Even though there is a 

clear and significant difference in the Hamiltonian and the system employed in this research 

compared to those used in similar studies, it remains feasible to draw comparisons between the 

findings of the research cited in [11-4]  references and the results obtained in the present study. This 

means that, despite the variations in the mathematical frameworks applied, a meaningful analysis can 
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still be conducted that relates the outcomes of both investigations, highlighting both congruences and 

discrepancies that may arise due to the differing Hamiltonian formulations. This research shares an 

important key result with the studies that have been mentioned previously. Despite the various 

structural differences that exist among these studies, they all converge on one significant finding. 

Specifically, they indicate that when the spin chain of the environment is subjected to the process of 

quantum phase transition, there is a notable increase in the sudden death of entanglement across 

different systems. This effect is observed in two-qubit systems, as well as in two-qutrit and qubit-

qutrit systems, highlighting a consistent trend across these diverse types of quantum states. 

Holographic negativity is an important way to measure entanglement in quantum systems, helping to 

understand how information is represented in holographic theories. In systems with two qutrits 

quantum units that can exist in three states—holographic negativity measures the entanglement 

between these two subsystems. Current research focuses on exploring how this entanglement connects 

to the geometric properties of holographic codes, which are mathematical structures used in these 

theories. The goal is to study the dynamics that result from the interaction between entanglement and 

geometry. This research includes calculating logarithmic negativity, which is a significant measure of 

entanglement, particularly relevant for quantum error-correcting codes. By investigating these 

relationships, researchers aim to deepen our understanding of quantum entanglement and its 

geometric aspects, contributing to the broader field of quantum information theory. 
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