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Abstract. In this paper, we consider an α′ corrected Reissner-Nordström AdS black
hole to study thermodynamics. We study the P − V criticality and thermodynamical
stability of the black hole. We obtained a first-order phase transition, which may be
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work used to resolve the information loss paradox.
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1 Introduction

Strominger and Vafa observed that the microscopic entropy of 5-dimensional extremal black
holes in string theory matches with the macroscopic entropy at the first order [1]. Beyond the
first order, the macroscopic entropy requires corrections to the superstring theory effective
action, and corresponding black hole solutions are valid to the level of approximation needed.
Another way to phrase this is that while most black-hole solutions in string theory adhere
only to the effective field theories at the zeroth order, the precision of stringy black hole
solutions can be improved by incorporating higher-order terms in α′ corrections. A modified
version of black holes, accounting for corrections associated with string theory, where α′

represents the string length scale, is an intriguing topic in theoretical physics. The inclusion
of higher-order terms in α′ is crucial as they signify genuine deviations from matter coupled
Einstein gravity due to the non-zero string length. The validity of microscopic entropy can
only be considered circumstantial without explicit knowledge of complete α′ corrected black
hole solutions and subsequent entropy computation using the action.

The first-order α′ correction to a family of solutions of the heterotic superstring effective
action, which are parallel to solitonic 5-branes with Kaluza-Klein monopoles, is studied [2].
It is demonstrated that this family of α′ corrected solutions remains invariant under α′ cor-
rected T -duality transformations. Additionally, the first-order α′ correction to the 4-charge
Reissner-Nordstr�m black hole beyond the near-horizon limit in the heterotic superstring
effective action is examined [3]. In this context, the Wald entropy is found to be in agree-
ment with the entropy obtained through microstate counting. Furthermore, the first-order
α′ correction to non-extremal 4-dimensional dyonic Reissner-Nordstr�m black holes with
equal electric and magnetic charges is also discussed in the context of heterotic superstring
effective field theory [3].

In this work, we consider a 4-dimensional α′ corrected Reissner-Nordström AdS black
hole. We first study the effect of α′ correction, charge parameter and cosmological constant
on the metric function. To be more precise, the decrease in charge parameter creates one
coincidence horizon and two separated horizons. As the charge of the black hole decreases,
the outer horizons of the Reissner-Nordström AdS black hole with/without α′ correction
have more overlap. With the decrease in cosmological constant, the outer horizons disappear
but the inner horizon, which is constructed due to the existence of α′ correction, exists for
any cosmological constant. The increasing α′ widens the separation of two outer horizons
and the inner horizon radius bigger. We also study the thermodynamics of the black hole.
Incidentally, the existence of α′ prevents the outer horizon’s final temperature from zero,
but it doesn’t affect the critical mass of the black hole. With increasing α′ correction, the
unstable phase is gradually corrected, and the heat capacity becomes continuously positive.
However, α′ correction causes instability in the final evaporation stage when the black hole
mass approaches the critical mass. Finally, we compute quantum work for this black hole.
The quantum work is represented by a unitary information preserving process, which is
the dual picture of an α′ corrected Reissner-Nordström AdS black hole. We find that an
α′ corrected Reissner-Nordström AdS black hole is unstable through a first-order phase
transition and will evaporate at the final state.

The paper is organized in the following manner. In section 2, we focus on α′ corrected 4-
dimensional Reissner-Nordström AdS black hole solution and discuss the horizon structure.
In section 3, we study the thermodynamics of black holes by calculating Hawking temper-
ature and entropy. Section 4 is devoted to calculating quantum work for the α′ corrected
Reissner-Nordström AdS black hole. Finally, we conclude the results in the last section.



Holographic Thermodynamics of an Enhanced Charged AdS Black Hole . . . 17

2 Black hole solution
A 4-dimensional Reissner-Nordström AdS black hole of mass M with the α′ correction given
by the following metric [4],

ds2 = N2f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin2 θdφ2), (1)

with
N2 = 1 + α′ p

2

8r4
, (2)

f(r) = 1− 2M

r
+

r2

l2
+

p2

2r2
− α′ p

2

4r4

[
1− 3M

2r
+

11p2

40r2

]
, (3)

where p is a physical constant related to the black hole charges, and l, at 4D space-time, is
the AdS radius, which is related to the cosmological constant via

Λ = − 3

l2
. (4)

We look into the structure of the α′ corrected Reissner-Nordström AdS black hole, and
we study the effect of this correction on the metric. According to equation (3), we check
the metric dependency on p, α′ and, Λ. In Figure 2, we plot f(r) versus radius with
different p. Here, we find that the decrease in p creates one coincidence horizon and two
separated horizons. Hence, comparing the α′ corrected Reissner-Nordström AdS black hole
with Reissner-Nordström AdS black hole shows the existence of α′ correction causes for
any content of the charge, ever less than pcri =

√
2M , there will be at least one horizon.

Moreover, as the charge of the black hole decreases, the outer horizons of the Reissner-
Nordström AdS black hole with/without α′ correction have more overlap. In Figure 2, we
fix the black hole’s charge to the critical charge. As Λ decreases, outer horizons disappear,
but the inner horizon, which is constructed due to the existence of α′ correction, exists for
any cosmological constant. In the following, we fix the mass and charge of the black hole,
and we probe the effect of the α′ parameter. As shown in Figure 3, increasing α (increasing
a) makes two outer horizons more separated and the inner horizon’s radius bigger.

The area of the event horizon for the black hole in terms of horizon radius rh is given by

Ah = 4πr2h, (5)

and the black hole volume is
V =

4

3
πr3h. (6)

3 Thermodynamics
We calculate the Hawking temperature of this kind of black hole based on the famous formula
between the surface gravity of the event horizon and the temperature that has been given
by [5]

T =
1

4π

[ 1√
−gttgrr

dgtt
dr

]
rh
. (7)

Considering the metric 3, we find the horizons of the α′ corrected Reissner-Nordström AdS
black hole, and we calculate the temperature of the outer horizon, rh, as follows,
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Figure 1: f(r) versus of r with different p for the α′ corrected Reissner-Nordström AdS
black hole. Plots have been depicted with p = 1.5, 1.4, 1.3, 1.2 from left to right. Dashed line
shows the Reissner-Nordström black hole without correction (α′ = 0). As p decreases, two
separated horizons are created. There exists critical p for which we have one coincidence
horizon. Plots have been depicted with M = 1, α′ = M2(a = 1),Λ = −0.1.

T =
l2
(
−10p2rh

(
15α′M + 8r3h − 8α′rh

)
+ 160Mr5h + 33α′p4

)
+ 160r8h

80
√
2πl2r7h

√
α′p2

r4h
+ 8

, (8)

where rh is the largest root of f(r) = 0 using the equation (3). Also, we illustrate it in
Figures 4 and 5. One can see in Figure 4 that decreasing the mass and charge of the black
hole, the temperature of the α′ corrected Reissner-Nordström AdS black hole increases until
it reaches a maximum and after that decreases to a finite temperature with finite mass and
charge. To research about the effect of α′, we plot Figure 5 with different a. The most
important result is that the existence of α′ prevents the outer horizon’s final temperature
from zero, but it doesn’t affect the critical mass of the black hole.

We consider the entropy of the α′ corrected Reissner-Nordström AdS black hole as a

S = πr2h, (9)

which rh is the largest root of the equation (3) as a outer horizon. To investigate the heat
capacity,

C = T
dS

dT
, (10)

we may approximate in two regions as,

C =
T dS

dM

(
dT
dM

)−1
,
(

dT
dM ≫ dT

dq

)
T dS

dq

(
dT
dq

)−1

,
(

dT
dM ≪ dT

dq

)
.

(11)
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Figure 2: f(r) versus of r with different Λ for the α′ corrected Reissner-Nordström AdS
black hole. Plots have been depicted with Λ = −0.1,−0.3,−0.5,−0.7 from left to right.
Dashed line shows the Reissner-Nordström black hole without correction (α′ = 0). As Λ
decreases, outer horizons disappear. Plots have been depicted with M = 1, α′ = M2(a =
1), p ≃ 1.4.

So, we employ the first condition of equation (11) and present the results of our calculations
in Figure 6. As expected for the Reissner-Nordström AdS black hole, there exists an unstable
thermodynamic phase (C < 0) when rh falls within a specific range. The black hole is in a
stable thermodynamic phase (C > 0) at the final stage of evaporation [5] (See dashed blue
curve in Figure 6). A notable outcome is that when we introduce α′ corrections and increase
their values, the thermodynamically unstable phase gradually corrects itself, and the heat
capacity becomes continuously positive. Conversely, as depicted in the right panel of Figure
6, this type of correction induces instability in the final evaporation stage as the black hole
mass approaches the critical mass. Additionally, the larger the value of α′, the more phase
transitions are predicted.

Eventually, we will investigate the effect of the α′ correction on the Van der Waals
equation. According to the outer horizon of the metric (3), we derive the mass of the black
hole as follows

M =
l2
(
−11α′p4 + 40p2

(
2r4h − α′r2h

)
+ 160r6h

)
+ 160r8h

20l2 (16r5h − 3α′p2rh)
. (12)

Hence, the black hole pressure and its conjugate variable, the black hole volume, are given
by

P =
3

8πl2
, V =

4

3
πr3h. (13)

In this case, the first law of thermodynamics is modified as,

dM = TdS +Φdq + V dP +Adα′, (14)
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Figure 3: f(r) versus of r with different α′ = aM2 for the α′ corrected Reissner-Nordström
AdS black hole.

Figure 4: The behaviour of temperature versus the mass and the charge of the α′ corrected
Reissner-Nordström AdS black hole. Left plot has been depicted with α′ = 2M2 and right
one with α′ = 5M2 while Λ = −0.1. Increasing α′ predicts less temperature, also, less mass
and charge for the remnant of the black hole.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
M

0.01

0.02

0.03

0.04

0.05

0.06

T

a=0

a=1

a=2

a=3

a=4

0.85 0.90 0.95 1.00
M

0.01

0.02

0.03

0.04

0.05

0.06

T

a=0

a=1

a=2

a=3

a=4

Figure 5: The behavior of temperature versus the mass for the α′ corrected Reissner-
Nordström AdS black hole. Plots have been depicted with a = 0, 1, 2, 3, 4 (α′ = aM2)
and Λ = −0.1 while p < pcri.

where Φ is the corrected electrostatic potential conjugate to the black hole charge, while
A is a thermodynamics variable conjugate to the correction parameter. Therefore, the
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Figure 6: The behavior of temperature versus the mass for the α′ corrected Reissner-
Nordström AdS black hole. Plots have been depicted with a = 0, 1, 2, 3, 4 (α′ = aM2)
and Λ = −0.1 while p < pcri.

thermodynamics relations read as,(
∂S

∂M

)
q,α′

=
1

T
,

(
∂S

∂q

)
M,α′

= −Φ

T
,

(
∂S

∂α′

)
M,q

= −A

T
. (15)

Based on equation (13), if we suppose the cosmological constant has not been allowed to
vary, P is treated as a constant. Moreover, for a fixed α′ and a fixed charge, we derive
the equation of state for the α′ corrected Reissner-Nordström AdS black hole concerning
equations (8), (12), and (13) as follows

P =

10πT
v

√
1 + 2p2α′

v4

(
v4 − 3p2α′

)
− 5v2 + 10p2 + 66p2α′2

v8 − 60p4α′2

v6 − 20p4α′

v4

10π(v4 − 7p2α′)
, (16)

where, v, is the specific volume with v = 2l2Plrh. Besides, one can find the critical point in
the condition

∂P

∂v
= 0,

∂2P

∂v2
= 0. (17)

We present the P−V plot in Figure 7 for the α′-corrected Reissner-Nordström AdS black hole
per critical temperature. As demonstrated, increasing α′ reduces the oscillatory component
of the curves. In other words, increasing α′ leads to phase transitions occurring over smaller
changes in the volume of the black hole. Additionally, we maintain α′ constant and illustrate
decreasing temperature from top to bottom in Figure 8. If the temperature exceeds the
critical temperature Tc, no phase transition occurs. When the temperature falls between Tc

and T0, the behavior of the black hole resembles that of a Van der Waals gas, exhibiting an
inflection point. Finally, if the temperature is below T0, the pressure becomes negative for
certain values of r+. As expected, in the absence of α′ correction, we recover the equation
of state for a charged AdS black hole, as can be found in various references, such as Ref.
[5, 6],

P =
T

v
− 1

2πv2
+

p2

πv4
. (18)
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Figure 7: P −V diagram of the α′ corrected Reissner-Nordström AdS black hole for various
α′ (α′ = aM2) per critical temperature.

1 2 3 4 5 6
r+

-0.005

0.005

0.010

0.015

0.020

P

T=Tc

T>Tc

T=T0

T<T0

Figure 8: P −V diagram of the α′ corrected Reissner-Nordström AdS black hole per various
temperature. Plots have been depicted with α′ = 1.5M2.

4 Quantum work
Black hole entropy, at quantum scales, is related to the microstates. Hence, a change in the
black hole microstates yields a change in the entropy. So, one can express the change in the
quantum corrected entropy of the Reissner-Nordström AdS black hole as

∆S = S(rh2)− S(rh1). (19)

This change in the entropy and the first law of thermodynamics [7] can be used to obtain a
change in the internal energy of the Reissner-Nordström AdS black hole.
The internal energy of α′ corrected Reissner-Nordström AdS black hole is calculated as
following,

E =
XE

120l2r5h (r
4
h − 112α′p2) (16r4h − 3α′p2)

√
α′p2

r4h
+ 8

, (20)

where

XE = −480α′p2r12h

(
224

√
α′p2

r4h
+ 8− 775

√
64α′p2

r4h
+ 2

)
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− 480r16h

(
16

√
64α′p2

r4h
+ 2− 2

√
α′p2

r4h
+ 8

)

− 161280α′2r8hp
4

√
64α′p2

r4h
+ 2

+ 320r14h l2

(
19

√
α′p2

r4h
+ 8− 8

√
64α′p2

r4h
+ 2

)

+ 1584p8l2α′3

(
8192

√
α′p2

r4h
+ 8−

√
64α′p2

r4h
+ 2

)

+ 20α′2p4r6h

(
790080

√
α′p2

r4h
+ 8− 1158

√
64α′p2

r4h
+ 2

)

+ 2α′p4r8h

(
632287

√
α′p2

r4h
+ 8− 30800

√
64α′p2

r4h
+ 2

)

+ 80p2α′r10h

(
−4431

√
α′p2

r4h
+ 8 + 1542

√
64α′p2

r4h
+ 2

)

+ 80p2r12h

(
16

√
64α′p2

r4h
+ 2− 506

√
α′p2

r4h
+ 8

)

+ α′3p6r2h

(
−983040

√
α′p2

r4h
+ 8 + 1920

√
64α′p2

r4h
+ 2

)

+ α′2p6r4h

(
2571

√
64α′p2

r4h
+ 2− 23148128

√
α′p2

r4h
+ 8

)
. (21)

Hence, we can obtain the change in internal energy as

∆E = E(rh2)− E(rh1). (22)

In the final stage, to study the amount of quantum work, we need to derive Helmholtz free
energy of the black hole, we have to consider the modified Smarr-Gibbs-Duhem formula for
a α′ corrected Reissner-Nordström AdS black hole as follows

M = 2TS − 2PV +ΦQ+Aα′. (23)

Comparing the first law of thermodynamics, equation (14), with Smarr formula, equation
(23), we identify the Helmholtz free energy of the black hole as mentioned in Ref. [8] as a

F = E − TS. (24)

As a result, we find Helmholtz free energy of the α′ corrected Reissner-Nordström AdS black
hole as follows

F =
XF

960l2r5h (r
4
h − 112α′p2) (16r4h − 3α′p2)X1

, (25)

where

XF =− 480
(
r16h

(
−16X1 + 128X2 + 48

√
2
)
+ α′p2r12h

(
1792X1 − 6200X2 − 5397

√
2
)
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+ 336α′2p4r8h

(
8X2 + 7

√
2
)
+ l2

(
−2560r14h

(
−19X1 + 8X2 + 3

√
2
)

− 1584α′3p8
(
−65536X1 + 8X2 + 7

√
2
))

+ 160p2l2r10h

(
5385

√
2α′ − 17724α′X1 + 6168α′X2 + r2h

(
−2024X1 + 64X2 + 24

√
2
))

− 8l2α′p4r6h

(
20205

√
2α′ − 15801600α′X1 + 23160α′X2

+ r2h

(
−1264574X1 + 61600X2 + 53820

√
2
))

+ 3l2α′2p6r2h

(
1920

(
7
√
2α′ − 4096α′X1 + 8α′X2

)
+ r2h

(
−185185024X1 + 20568X2 + 17953

√
2
)))

, (26)

with

X1 ≡

√
α′p2

r4h
+ 8,

X2 ≡

√
64α′p2

r4h
+ 2. (27)

Therefore, the change of Helmholtz free energy can be expressed as,

∆F = F (rh2)− F (rh1). (28)

Now, the quantum work (WQ) is expressed as [9],

WQ = e
∆F
T , (29)

where T is given by the equation (8). In this scenario, a dual depiction of black hole geom-
etry is articulated using superconformal field theory, offering a potential resolution to the
information loss paradox. The black hole geometry of an α′ corrected Reissner-Nordström
AdS black hole emits Hawking radiation, leading to the information loss paradox in quan-
tum thermodynamics. This paradox may find resolution through the quantum behavior
presented in the dual picture of a superconformal field theory. Consequently, an α′ cor-
rected Reissner-Nordström AdS black hole is described by a unitary superconformal field
theory. This framework enables the study of black hole geometry through quantum non-
equilibrium thermodynamics, achievable by computing the quantum work of an α′ cor-
rected Reissner-Nordström AdS black hole. This quantum work is symbolized by a unitary
information-preserving process, serving as the dual depiction of the black hole. The non-
equilibrium quantum thermodynamics on the alternate side facilitates the loss of mass from
an α′ corrected Reissner-Nordström AdS black hole through a unitary process. Demonstrat-
ing that an α′ corrected Reissner-Nordström AdS black hole is unstable via a first-order
phase transition reveals its eventual evaporation. Consequently, information leakage from
an α′ corrected Reissner-Nordström AdS black hole during its final stages of evaporation
is conceivable through the unitary information-preserving process. Thus, employing non-
equilibrium quantum thermodynamics offers a pathway to resolving the information loss
paradox within the given system.
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5 Conclusion
In this work, we have considered a 4-dimensional α′ corrected Reissner-Nordström AdS
black hole solution. Furthermore, we studied the effects of α′ correction, charge parameter
and cosmological constant on the solution. Here, we have found that the decrease in the
charge parameter creates one coincidence horizon and two separated horizons. As the charge
of the black hole decreases, the outer horizons of the Reissner-Nordström AdS black hole
with/without α′ correction have more overlap. When the cosmological constant decreases,
the outer horizons disappear but the inner horizon, which is constructed due to the existence
of α′ correction, exists for any cosmological constant. Interestingly, the increasing α′ widens
the separation of two outer horizons, and the inner horizon radius increases.

Additionally, we have discussed the thermodynamics of the black hole. Here, we have
found that the existence of α′ prevents the outer horizon’s final temperature from zero, but it
doesn’t affect the critical mass of the black hole. With increasing α′ correction, the unstable
phase is gradually corrected, and the heat capacity becomes continuously positive. On the
other hand, α′ correction causes instability in the final evaporation stage when the black
hole mass approaches the critical mass. Finally, we have derived quantum work for this
black hole. The quantum work is represented by a unitary information preserving process,
which is the dual picture of an α′ corrected Reissner-Nordström AdS black hole. We have
observed that an α′ corrected Reissner-Nordström AdS black hole is unstable through a
first-order phase transition and will evaporate at the final state.
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