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Abstract. In this paper, we consider a metric of a rotating black hole in conformal

gravity. We calculate the thermodynamical quantities for this rotating black hole in-

cluding Hawking temperature and entropy in four dimensional space-time, as we obtain

the e�ective value of Komar angular momentum. The result is valid on the event hori-

zon of the black hole, and at any radial distance out of it. Also, we verify that the �rst

law of thermodynamics will be held for this type of black hole.

Keywords: Black Hole; Thermodynamics; Conformal Gravity.

COPYRIGHTS: ©20243, Journal of Holography Applications in Physics. Published by Damghan
University. This article is an open-access article distributed under the terms and conditions of the
Creative Commons Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0

83



84 Negin Kamvar et al.

1 Introduction

During the last century, Einstein Gravity (EG) was one of the corner stones of theoretical
physics. Despite of the success in the explanation of various gravitational phenomena in
nature, there are some unsolved basic problems such as the singularity problem, black hole
physics, and most importantly, quantum theory of gravity. There was an enormous e�ort
in these lines to solve such problems but up to now, it has not been obtained a complete
theory of gravity. One of such alternative theories of gravity is Conformal Gravity(CG) [1],
the theoretical reason for which this extension is elegant in that, of all extensions that can
be constructed by considering Lagrangians with more curvatures, the special case given by
a conformally symmetric Lagrangian is unique, as discussed by Weyl; the phenomenological
argument for which such an extension is important is that in this generalization the scale
symmetry is related to the property of renormalizability [2]. Intuitively, besides local Lorentz
symmetry, it also has an scaling symmetry in which the physics is invariant under the
rescaling of the metric as gµν −→ eΩ(x)gµν . The observational fact for which this extension
is interesting is that within this generalization, the projective structure gives rise to the
possibility of describing in terms of background e�ects the rotation of galaxies, therefore
reducing to geometry the problem of dark matter, as discussed by Mannheim and Kazanas
in [3]. A detailed introduction on conformal gravity has been compiled in [4].

This paper is organized as follows: in section 2, we introduce the local solution of a
neutral rotating black hole in pure conformal gravity. The main propose of this paper is
calculating the thermodynamical quantities for this type of black holes. Black hole ther-
modynamics emerged from the classical general relativistic laws of black hole mechanics,
summarized by Bardeen - Carter - Hawking, together with the physical insights by Beken-
stein about black hole entropy [5] and the semiclassical derivation by Hawking of black hole
evaporation. All the results obtained from 1963 to 1973 culminated in the famous four laws
of black hole mechanics by Bardeen et al. [6]; therefor, in section 3, we obtain the ther-
modynamical quantities. We calculate some details in evaluating the temperature, entropy,
and angular momentum, for the case of black hole considered in this paper. Hawking radia-
tion results from the quantum e�ect of �elds in a classical geometry with an event horizon.
The �ux of Hawking radiation can be also obtained through the scattering analysis and
there have been the studies of the grey body factor for various black holes to calculate the
Hawking temperature (T = κ

2π ) [7]. To calculate the entropy of the black hole according to
Bekenstine black hole entropy [5] there are several similarities between black-hole physics
and thermodynamics. Most striking is the similarity in the behaviors of black hole area and
entropy. In Wald formula for entropy had shown that this term is dependent on area of
the black hole (S = A

4πG ) [8]. In this paper, we show this fact with a di�erent coe�cient
because of the lagrangian density that we use in Wald integral. At the end of this section,
we calculate the e�ective value of Komar angular momentum by the spacelike killing vector
of black hole and using the Hodge operators. In section 4, it is veri�ed that the �rst law of
thermodynamics will be held. The paper is concluded in section 5.

2 The metric

In this section, we brie�y explain the metric solution of a black hole in conformal gravity
[9]. Here, we start with the action

SCG = −αg
∫
d4x
√
−gCµνλθCµνλθ + SM = −2αg

∫
d4x
√
−g[(Rµν)2 − 1

3
R2] + SM , (1)
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where

Cµνλθ = Rµνλθ +
1

6
R[gµλgνθ − gµθgλν ]− 1

2
[gµλRνθ − gµθRλν − gνλRµθ + gµθRνλ],

is the Weyl conformal tensor. As a result the overall coupling of the theory (−αg) is dimen-
sionless which seems is a good news for UV �niteness of the theory [9]. After varying the
action with respect to the metric, one obtains the equation of motion as

4αgW
µν = TµνM , (2)

where TµνM is Bach tensor and is de�ned as

Wµν =
1

3
∇µ∇νR−∇λ∇λRµν +

1

6
(R2 +∇λ∇λR− 3(Rκθ)

2)gµν + 2RκθRµκνθ −
2

3
RRµν .

In addition, one �nds that the matter part of the action should also respect to the scaling
symmetry because the left hand side of the above equation is traceless so the matter part
of the action should have a traceless energy-momentum tensor. Fortunately, by introducing
a conformal coupling term for the scalar mass term the standard model Lagrangian is also
conformable invariant [10]. In particular, it has obtained

L =
1

2
(Dµφ)+(Dµφ)− 1

12
R|φ|2 − λ

4
|φ|4 − 1

4
F aµνF

aµν , (3)

where
Dµ = ∇µ − ieAaµTa,

and F aµν is the Lie algebra valued �eld strength tensor of the gauge �eld. After solving the
equation of motion for these �elds, it has also obtained [9]

TµνM =
1

6
[gµν∇λ∇λ|φ|2 −∇µ∇ν |φ|2 −Gµν |φ|2], (4)

where Gµν is Einstein tensor.

2.1 Rotating black hole

In this part, we use the slowly rotating solutions for pure conformal gravity, that obtained
in [9]. Let us consider the following line element around a rotating black hole

ds2 = β(r)dt2 − dr2

β(r)
− r2dθ2 − r2 sin2 θ(dφ− N(r)

r
dt)2, (5)

where

β(r) = C1 +
1

3

C2
1 − 1

C2r
+ C2r + C3r

2,

and
N(r) = C4,

here, C1 = σ is considered as a constant of integration,
C2

1−1
C2

= −m, C2 is the coe�cient

that appears in metric because of the CG solution, C3 = −λ3 , that λ is the cosmological
constant, and N(r) is the constant value independent to r, (N(r) = ω); therefore, we can
write the metric solution as a familiar form of

β(r) = σ − 1

3

m

r
+ Cr − λ

3
r2. (6)
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3 Thermodynamical quantities

In this section, we calculate the thermodynamical quantities of a rotating black hole with
the metric in the previous section. We work in a system, that the value of } = G = C = 1.

3.1 Singularity and area of the event horizon

The outer spherical boundary of the black hole, which is considered as its "surface", is called
the event horizon. In this boundary, the velocity needed to escape exceeds the speed of light,
which is the speed limit of the cosmos. Matter and radiation fall in, but they can't get out.
Also, this radius depends on the mass of the black hole. In this part, �rst we obtain the
black hole singularity by solving the equation β(r) = 0, so we can �nd the radius of black
hole. This is a cubic equation that has three roots for r. Two of the roots are imaginary and
for this reason they will be neglected. The other one is positive and the largest (r+) and it
gives the physical information that we want to obtain in this paper. After that, we obtain
the area of the horizon for the black hole, which is of considerable importance because of the
area theorem, which states that the horizon area of a classical black hole can never decrease
in any physical process.

By setting dr = dt = 0 in the metric line elements, we can �nd line elements for the
2-dimensional horizon,

dσ2 = −r2
+dθ

2 − r2
+ sin2 θdφ. (7)

The area of the black hole horizon is then

A =

∫ 2π

0

dφ

∫ π

0

√
|det γ|dθ, (8)

where γ is the metric tensor for the black hole horizon.

3.2 Entropy

The entropy of black holes can be computed by the Wald formula [8]

S = −8π

∫
r=r+

√
hd2xεabεcd

∂L
∂Rabcd

, (9)

where h is the metric determinant on the surface.
In conformal gravity, we have [11]

L =
1

2
αC2 =

1

2
α(RµνρσRµνρσ − 2RµνRµν +

1

3
R2). (10)

After some calculations, one can show that

L =
1

2
α(RµνR

µν − 1

3
R2). (11)

The indices a and b take the (t, r) directions, thus we have

εabεcd
∂L

∂Rabcd
=

1

2
α

[
−(grrRtt + gttRrr) +

2

3
gttgrrR

]
, (12)
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and
d2x
√
h|r=r+ = dθdφ

√
gθθgφφ|r=r+ , (13)

therefore, we �nd the entropy as follows

S = 4πα

[
4m

9r3
+

− 4

3r2
+

(1 + σ)− 2C

r+
+

2

9
λ(1 + 3r+) +

ω2

3πr2
+

]
A, (14)

where A is the area of the black hole.

3.3 Temperature

In this part, we attempt to obtain temperature of the aforementioned black hole. Ac-
cording to the Hawking radiation theorem, black hole temperature is dependent on surface
gravity(κ), that it is equal to [12]

κ = lim
r→r+

√
aµaµ

ut
, (15)

where
aµ = Γµνλu

νuλ = (ut)2(Γµtt + 2ΩHΓµtϕ + Ω2
HΓµϕϕ), (16)

in which ΩH , is the angular velocity of the black hole and equal to

Ω = − gtϕ
gϕϕ

.

The normalization condition veri�es that

1 = uµuµ = (ut)2(gtt + 2ΩHgtϕ + Ω2gϕϕ). (17)

So we obtain aµaµ as

a2 = aµaµ = |grr|(∂r lnut)2 + |gθθ|(∂θ lnut)2, (18)

where ut = 1
β(r) . Using the inverse metric coe�cient

grr = −β(r), (19)

gθθ = − 1

r2
. (20)

Since we are interested to obtain the surface gravity on the event horizon, so we only
calculate the �rst term of Eq. (18), then as a result, the surface gravity on the event horizon
is equal to

κ =
1

2
β′(r+), (21)

where

β′(r+) = C2 −
1

3

C2
1 − 1

C2r2
+

+ 2C3r+. (22)

By comparison Eqs. (21) and (22), we can calculate the surface gravity as

κ =
1

2
(
1

3

m

r2
− 2

3
λr + C), (23)

thus, the temperature is given by

T =
κ

2π
=

1

4π
(
1

3

m

r2
− 2

3
λr + C). (24)
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3.4 Angular momentum

The Komar de�nition of the conserved quantity, corresponding to the spacelike Killing vector
ξµ(ϕ), in a coordinate free notation is given by [13]

Kη =
1

16π

∫
∗dη, (25)

where

dη =
∂g03

∂r
dr ∧ dt+

∂g03

∂θ
dθ ∧ dt+

∂g33

∂r
dr ∧ dϕ+

∂g33

∂θ
dθ ∧ dϕ. (26)

Instead of working with dt, dr, dθ, dϕ we work with orthonormal one forms, so we write
(26) as,

dη = λ10x̂1 ∧ x̂0 + λ20x̂2 ∧ x̂0 + λ13x̂1 ∧ x̂3 + λ23x̂2 ∧ x̂3, (27)

where

λ10 = −∂g03

∂r
− N(r)

r

∂g33

∂r
,

λ20 = − 1

r
√
β(r)

∂g03

∂θ
− N(r)

r

∂g33

∂θ
,

λ13 =

√
β(r)

r sin(θ)

∂g33

∂r
,

λ23 =
1

r2 sin(θ)

∂g33

∂θ
. (28)

The dual of (27) is [14]

∗dη = λ10x̂2 ∧ x̂3 + λ20x̂1 ∧ x̂3 − λ13x̂2 ∧ x̂0 − λ23x̂1 ∧ x̂0. (29)

We can write (29) as

∗dη = δrtdr ∧ dt+ δθtdθ ∧ dt+ δrϕdr ∧ dϕ+ δθϕdθ ∧ dϕ, (30)

where

δθϕ = λ10r
2 sin θ,

δθt = −λ10rN(r) sin θ,

δrϕ = λ20
r sin θ√
β(r)

,

δrt = −λ20
N(r) sin θ√

β(r)
+ λ23,

δθt = λ13r
√
β(r). (31)

To calculate Komar e�ective angular momentum, we need to de�ne a boundary surface
(∂Σ), that is characterized by a constant r and dt = − g03g00

dϕ, so we have

∗dη = −g03

g00
δθtdθ ∧ dt+ δθϕdθ ∧ dϕ, (32)

so we can write (25)as,

Kη = − 1

16π

∫
g03

g00
δθtdθdt+

1

16π

∫
δθϕdθ dϕ, (33)
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Moving along a closed contour, the �rst term of the right hand side gives the shift of
time between the initial and the �nal events. Since we are performing an integration over
simultaneous events, this term must be subtracted from Eq. (33) ([15, 16]). So we write the
Eq. (33) as follow

Kη =
1

16π

∫
λ10r

2 sin θdθ dϕ. (34)

By using Eq. (28)

Kη =
1

16π

∫
(−∂g03

∂r
− N(r)

r

∂g33

∂r
)r2 sin θdθdϕ, (35)

using the metric coe�cient
g03 = rN(r) sin2 θ, (36)

g33 = −r2 sin2 θ. (37)

After calculating the integral (35) by using Eqs. (36), (37) we obtain the angular momentum
as below

J =
1

6
r2ω. (38)

4 First law of thermodynamics

For perturbations of stationary black holes, the change of energy is related to the change of
area, angular momentum, and electric charge according to the equations below

TdS = dE − dW, (39)

where
dW = ΩdJ + ΦdQ. (40)

Since entropy is dependent on the area of black hole, thus dS is proportional to dA :in
addition, due to the energy of black hole is dependent on its mass, dE is proportional to
dM ; as a result, for (39) we have

dM =
κ

8π
dA+ ΩdJ + ΦdQ. (41)

For this black hole, we have Φ = 0 because it is neutral, and Ω = ω
r . Therefore, the �rst

law of thermodynamics for this black hole is as follows

dM =
β′(r+)

16π
dA+

ω

r
dJ. (42)

In conclusion we saw that the �rst law of black holes thermodynamics is held.

5 Conclusion

In this paper, we have used the metric of a rotating black hole, obtained in conformal gravity
to calculate its thermodynamical quantities. We have calculated the Hawking temperature

(T = κ
2π ) by the formula (κ = limr→r+

√
aµaµ

ut ) and the entropy of a rotating black hole as
the function of the area of the black hole by using the Lagrangin density for the metric in
conformal gravity according to Wald formula and after that we have calculated the e�ective
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value of angular momentum with Komar expression for this black hole at any distance r, by
choosing boundary of a �nite spatial surface of radius r. This choice enabled us to evaluate
the Komar integrals without any asymptotic approximation. At the end we have shown that
the �rst law of the thermodynamics is held for this black hole.
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