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Abstract. Spontaneous symmetry breaking occurs when the underlying laws of a
physical system are symmetric, but the vacuum state chosen by the system is not.
The (3+1)d ϕ4 theory is relatively simple compared to other more complex theories,
making it a good starting point for investigating the origin of non-trivial vacua. The
adaptive perturbation method is a technique used to handle strongly coupled systems.
The study of strongly correlated systems is useful in testing holography. It has been
successful in strongly coupled QM and is being generalized to scalar field theory to
analyze the system in the strong-coupling regime. The unperturbed Hamiltonian does
not commute with the usual number operator. However, the quantized scalar field ad-
mits a plane-wave expansion when acting on the vacuum. While quantizing the scalar
field theory, the field can be expanded into plane-wave modes, making the calcula-
tions more tractable. However, the Lorentz symmetry, which describes how physical
laws remain the same under certain spacetime transformations, might not be mani-
fest in this approach. The proposed elegant resummation of Feynman diagrams aims
to restore the Lorentz symmetry in the calculations. The results obtained using this
method are compared with numerical solutions for specific values of the coupling con-
stant λ = 1, 2, 4, 8, 16. Finally, we find evidence for quantum triviality, where self-
consistency of the theory in the UV requires λ = 0. This result implies that the ϕ4

theory alone does not experience SSB, and the ⟨ϕ⟩ = 0 phase is protected under the
RG-flow by a boundary of Gaussian fixed-points.

Keywords: Spontaneous Symmetry Breaking; Perturbation Method; Resummation;
Renormalization Group Flow; Quantum Triviality.
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1 Introduction
The self-interaction of the Higgs field [1] is one way to generate mass through quantum
correction, but it faces challenges due to ultraviolet (UV) divergences. These divergences
arise in calculations when considering interactions at extremely short distances or high en-
ergies, which indicates that the theory might break down at such scales. The UV divergence
problem is a longstanding issue in Quantum Field Theory (QFT). The evidence presented in
Ref. [2] suggests that in a four-dimensional scalar field theory, the self-interaction of a scalar
field alone might not be enough to generate the spontaneous symmetry breaking (SSB) re-
sponsible for mass generation. This has implications for the Higgs mechanism, as it indicates
that additional matter interactions might be necessary for the observed mass generation. In
this letter, we discuss the analysis of quantum corrections in (3+1)d ϕ4 theory, particularly
when the scalar mass vanishes (mp = 0) [3]. The ϕ4 theory in dimensions higher than four
is known to exhibit triviality [4], but in four dimensions, it remains an open problem.

We are interested in determining whether a non-trivial vacuum ⟨0|ϕ|0⟩ ̸= 0 arises solely
from semi-classical corrections without the influence of a non-zero physical mass. However,
the analysis of quantum corrections in a strongly coupled theory presents challenges, and
existing methods may not be feasible. One of the challenges [3] arises from the lack of
a suitable computation method in a strongly coupled theory. The adaptive perturbation
method [5,6] has proven to be reliable in the context of Quantum Mechanics (QM) beyond
the weak-coupling regime [7–9]. The central question we aim to address in this letter is:
Uncovering the Origin of SSB from Adaptive Perturbation Method?

Following Refs. [5, 6] instead, we introduce a functional parameter γ(k⃗) (an even function
for k⃗ and non-negative) to the scalar field ϕ and its conjugate momentum (Π). The scalar
field can be expanded in terms of creation (a†) and annihilation (a) operators as follows:

ϕ(x)|0⟩

≡
(∫

d3k⃗

(2π)3
1√
2γ(k⃗)

(ak⃗e
ikx + a†

k⃗
e−ikx) + ϕ0

)∣∣∣∣0〉, (1)

where k⃗ represents the momentum, k · x ≡ −Ek⃗x
0 + k⃗ · x⃗, Ek⃗ ≡ k⃗2 + m2, and m is the

mass. The constant ϕ0 ∈ R represents a condensation of the scalar field. When evaluated
in the vacuum state |0⟩, without a loop correction, the expectation value of the scalar field
is ⟨ϕ⟩ = ϕ0. The conjugate momentum Π(x) is defined as the time derivative of the scalar
field

Π(x)|0⟩ ≡ ∂0ϕ(x)|0⟩. (2)

When ϕ0 = 0, the two expansions of ϕ are related by the Bogoliubov transformation:
U(θ)ak⃗U

−1(θ) → ak⃗ and U(θ)|0⟩ → |0⟩, where U(θ) is a unitary operator parameterized by
θ.

In the context of perturbation theory, the choice of the unperturbed Hamiltonian H0 plays
a crucial role in determining how the perturbative expansion is performed. The different de-
composition does not affect the canonical variables but the convenience of the expansion. In
conventional perturbation theory, H0 is usually chosen to be the free part of the Hamiltonian,
representing the system without any interactions. This choice simplifies the perturbative
calculations and is often convenient in many physical situations. Different choices of H0 can
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lead to different perturbative expansions, but they should ultimately yield the same phys-
ical predictions. The adaptive perturbation method [5, 6] made a non-conventional choice
for H0. To describe their approach briefly, they rewrote the total Hamiltonian in terms of
creation and annihilation operators. Then, they specified H0 as the sum of terms with an
equal number of creation and annihilation operators. Ultimately, the validity and usefulness
of a particular choice for H0 depend on the specific physical system and the goals of the
perturbative calculations. The key requirement is that the chosen H0 should be tractable
enough to allow for perturbative treatment and that the perturbative results are consistent
with the physical reality of the system under consideration.

In this paper, we focus on determining γ(k⃗) and ϕ0 by minimizing the energy. The initial
step lays the foundation for further exploration. Subsequently, we successfully derive the
plane-wave solution when the fields act on the vacuum state, as defined in Eq. (1). This
paves the way for a deeper understanding of the system under consideration. It is impor-
tant to mention that while the adaptive perturbation method has been well-established in
its Hamiltonian formulation [10], we also explore the possibility of developing a Lagrangian
description. We expect that a Lagrangian perspective could complement our findings and
lead to even more comprehensive insights. One goal is to investigate Lorentz symmetry in
the adaptive perturbation method. To achieve this, we have employed a novel approach
of resuming Feynman diagrams, organized by powers of both ϕ0 and γ(k⃗). This exten-
sion of the method allows us to incorporate Lorentz symmetry effectively, opening up new
avenues of investigation. Furthermore, we utilize the diagrammatic method to compute
correlation functions, enabling us to study the system even under conditions of significant
coupling. The successful matching of these correlation functions with lattice simulation re-
sults demonstrates the accuracy and robustness of our approach. One of the key insights we
obtain from our analysis, using the renormalization group (RG) flow [11], is that the self-
interaction of a scalar possible not be the primary origin of SSB. Instead, we find evidence
suggesting that interactions with other matters play a crucial role in the process of SSB.
This finding opens up intriguing possibilities for future research in this field.

2 Dynamics

The Hamiltonian for λϕ4 theory is given by

H =

∫
d3x

(
1

2
Π2(x) +

1

2
∂jϕ(x)∂jϕ(x) +

m2

2
ϕ2(x)

+
λ

4!
ϕ4(x)

)
. (3)

The index j = 1, 2, 3 denotes the space dimensions, while the parameters m and λ are the
bare mass and the (positive) coupling constant, respectively.

The parameters γ(k⃗) and ϕ0 are not arbitrary. More precisely, we fix them by minimizing
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the vacuum energy. The direct computation shows that vacuum energy is

⟨0|H|0⟩

= V

[
m2

2
ϕ2
0 +

λ

4!
ϕ4
0 +

∫
d3k⃗

(2π)3

(
γ(k⃗)

4
+

k⃗ · k⃗ +m2

4γ(k⃗)

)
+
λ

8
ϕ2
0

∫
d3k⃗

(2π)3
1

γ(k⃗)
+

λ

32

(∫
d3k⃗

(2π)3
1

γ(k⃗)

)2]
, (4)

where V is a spatial volume.

Requiring γ(k⃗) to extremize ⟨H⟩ imposes the first saddle point equation,

γ2(k⃗)− (k⃗2 +m2)− λϕ2
0

2
− λ

4

∫
d3p

(2π)3
1

γ(p⃗)
= 0 , ∀k⃗ . (5)

The arbitrariness in k⃗ allows the decomposition of this condition into two:

γ2(k⃗) = k⃗ · k⃗ + γ2(0),

γ2(0) = m2 +
λ

2
ϕ2
0 +

λ

4

∫
d3k⃗

(2π)3
1

γ(k⃗)
. (6)

Requiring ϕ0 to extremize ⟨H⟩ imposes the second saddle point equation,

ϕ0

(
m2 +

λ

3!
ϕ2
0 +

λ

4

∫
d3k⃗

(2π)3
1

γ(k⃗)

)
= 0 . (7)

The Eq. (7) admits two solutions, one with ϕ0 = 0, and the other generically non-zero
determined by m and λ. In what follows, we will frequently treat cases with ϕ0 = 0 and
ϕ0 ̸= 0 separately. Note that when m2 ≥ 0, the expression in the parenthesis is non-zero.
Therefore, one must pick the ϕ0 = 0 solution.

The commutator of H0 and a†p⃗ contains terms with different numbers of a and a†,

[H0, a
†
p⃗]

=
γp⃗
2
a†p⃗ +

p⃗ · p⃗+m2

2γp⃗
a†p⃗ +

λϕ2
0

4γp⃗
a†p⃗

+
λ

4!

∫
d3k⃗1
(2π)3

∫
d3k⃗2
(2π)3

∫
d3k⃗3
(2π)3

1
√γk⃗1

γk⃗2
γk⃗3

γp⃗

×(2π)3δ(3)(k⃗1 + k⃗2 + k⃗3 + p⃗)

×(a†
−k⃗1

a†
−k⃗2

ak⃗3
+ ak⃗1

a†
−k⃗2

a†
−k⃗3

+ a†
−k⃗1

ak⃗2
a†
−k⃗3

).

(8)

When the commutator acts on the vacuum, the time evolution of fields is the same as in
quantizing a non-interacting theory

[H0, a
†
p⃗]|0⟩ = γp⃗a

†
p⃗|0⟩

⇒ eiH0ta†p⃗e
−iH0t|0⟩ = eiγp⃗ta†p⃗|0⟩ . (9)
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Figure 1: This figure shows the summation of bubble diagrams for the two-point correlator
with ϕ0 = 0 up to two loops in λϕ4 theory.

This computation uses Eq. (6). Hence we show that Eq. (1) quantizes the interacting
sector successfully. However, general operators acting on the vacuum, such as ϕ2|0⟩, do not
have such simple plane-wave expansion (there is no such issue in QM). Therefore, Lorentz
symmetry is not manifest in each perturbation order. The restoration of Lorentz symmetry
happens when taking into account all orders.

3 Adaptive Perturbation Method from Resummation
Now we relate the canonical calculation to the Feynman diagrams at t = 0. We start by
considering ϕ0 = 0. In such a case, γ2(0) in Eq. (6) can be solved recursively. Substituting
the result into the two-point function, one obtains a summation of all bubble diagrams from
a tree propagator. In Fig. 1, we list the relevant diagrams up to two loops. The second and
third diagrams arise as in the standard geometric series expansion. The last one is beyond
the expansion. Note that although the recursion does not capture all the diagrams for the
two-point function, the only missing one (up to two loops) is the sunset diagram with three
internal propagators.

We can reproduce the result upon replacing m2 with the effective mass γ2(0), and compute
⟨ϕ(x)ϕ(y)⟩ directly from Eq. (1) and the commutation relations. It is sufficient to analyze
only the tree and sunset diagrams (up to two-vertex diagrams) for evaluating the connected
two-point function. Hence the adaptive perturbation method should simplify the computa-
tion.

Now we turn to the case with ϕ0 ̸= 0. The Eq. (7) then implies

ϕ2
0 = −6m2

λ
− 3

2

∫
d3k

(2π)3
1√
2γ(k⃗)

. (10)

With ϕ0 fixed by this equation, we compute the condensation ⟨ϕ⟩ up to λ2 order using Eq.
(1), and we obtain

⟨ϕ⟩ − ϕ0 (11)

∼ ϕ0
λ2

4!γ2(0)

∫
d3k⃗1
(2π)3

1

γ(k⃗1)

×
∫

d3k⃗2
(2π)3

1

γ(k⃗2)γ(k⃗1 + k⃗2)
(
γ(k⃗1) + γ(k⃗2) + γ(k⃗1 + k⃗2)

) .
Note that the VEV ⟨ϕ⟩ ∝ ϕ0. Alternatively, the right-hand side corresponds to a single
diagram shown in Fig. 2, where one applies the standard Feynman rule with m2 replaced
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Figure 2: The black dot in the diagram indicates the resummation by γ2(0).

Figure 3: This figure shows the bubble resummation for ϕ0.

by the effective mass γ2(0).

Although the above result is not manifestly Lorentz invariant, we expect that it is possible
to restore the symmetry by hand from the following effective Lagrangian (here focuses on
the case with ϕ0 = 0)

L0 = −1

2
(∂µϕ∂

µϕ+ γ2(0)ϕ2),

LI =
λ

4

(∫
d4qE
(2π)4

1

q2E + γ2(0)

)
ϕ2 +

λ

4!
ϕ4, (12)

where L0 and LI are the unperturbed and perturbed parts, respectively. We label the
Euclidean spacetime index as µ = 0, 1, 2, 3. The qE is the momentum in the Euclidean
signature. The unperturbed Hamiltonian H0 is identical to the usual one but with the mass
parameter given by γ2(0). Therefore, the usual Feynman rules apply with proper parameters.
The number of relevant diagrams reduces significantly using the Lorentz invariant approach.
When performing perturbation computations using traditional methods, it is necessary to
add up the contributions of all bubble diagrams shown in Fig. 3 for ⟨ϕ⟩ (include at least
various one-loop and two-loop diagrams). In comparison, our proposal requires only one
at two-loop, shown in Fig. 2. In this regard, our approach is an efficient resummation
prescription of the Feynman diagrams.

4 Perturbation vs. Lattice

We adopt the adaptive perturbation method to obtain an analytical solution and compare it
with the lattice simulation. To compare with lattice simulation, we replace the propagator



58 Chen-Te Ma et al.

with the lattice propagator as in the following

∫
d4kE
(2π)4

1

k2E + γ2(0)

→
∫

d4kE
(2π)4

1

γ2(0) +
∑4

µ=1(2− 2 cos(kE,µ))
. (13)

On the lattice, we set the lattice spacing a to be 1.

Now we use the solution of the saddle point:

Γ2(kE)

= m2 +
λ

2
ϕ2
0 +

λ

2

∫
d4qE
(2π)4

1

q2E + Γ2(qE)

−λ2ϕ2
0

2

×
∫

d4qE
(2π)4

1

q2E + Γ2(qE)

1

(kE − qE)2 + Γ2(kE − qE)
;

(14)

ϕ0

(
m2 +

λ

3!
ϕ2
0 +

λ

2

∫
d4kE
(2π)4

1

k2E + Γ2(kE)

)
= 0, (15)

to reduce the number of diagrams (all one-loop diagrams are resumed). We do the per-
turbation around the saddle point, and it matches the lattice simulation in Fig. 4. Note
that on a lattice, tunneling between different vacua cannot occur. Therefore, we simulate
⟨|ϕ|⟩ and compare it to our result when ϕ0 ̸= 0. We simulate the lattice configurations from
two vacuums. For ϕ0 = 0, one can only consider ⟨ϕ2⟩,⟨ϕ4⟩ and compare them with lattice
results. If the phase transition is continuous, the γ2(0) should be continuous across the two
phases (⟨ϕ⟩ = 0 and ⟨ϕ⟩ ≠ 0). Said differently, if one solves the γ2(0) using the saddle point
equations (Eqs. (5), (7)) with ϕ0 ̸= 0, and then sends ϕ0 → 0, continuity then implies that
γ2(0) in this limit should equal the solution to Eqs. (5), (7) with ϕ0 = 0. Such analysis
leads to

m2 = −λ

2

∫
d4kE
(2π)4

1∑4
µ=1(2− 2 cos(kE,µ))

. (16)

Note that when m2 ≥ 0, the solution ϕ2
0 is non-positive (unphysical). Therefore, the physical

solution can only be ϕ0 = 0. We show the phase diagram for m2 ≤ 0 in Fig. 5. Because ϕ
is proportional to ϕ0, the analysis of the phase separation not just at the tree level but also
loop effects.
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Figure 4: We compare the perturbation result to the Hybrid Monte Carlo simulation in
correlation functions. In the lattice simulation, we consider ⟨|ϕ|⟩ rather than ⟨ϕ⟩ for ϕ0 ̸= 0.
The number of measurements is 27 sweeps with thermalization 28 sweeps and measure
intervals 27 sweeps. The error bars are less than 1%. The Nsteps is the number of molecular
dynamics steps.
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Figure 5: The phase diagram of the critical line (γ2(0) = 0) separating by the symmetric
and SSB cases. We show the perturbation result in the red dots and connect them as a
straight line. This diagram illustrates the boundary between the two phases.
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5 RG Flow
In the situation with ϕ0 = 0, we have the physical mass given by

m2
p

= γ2(0)

−
λ2
p

3!

1

(16π2)2

×
∫ 1

0

dx1

∫ 1−x1

0

dx2

[
Λ4

α1α2

(
(1− α3)m2

p + (α1 + α2)Λ2
)

+
(1− α3)m

2
p

α2
1α

2
2

× ln

(
(1− α3)m

2
p

(
(1− α3)m

2
p + (α1 + α2)Λ

2
)(

(1− α3)m2
p + α1Λ2

)(
(1− α3)m2

p + α2Λ2
))],

(17)

where

α1 = x1 + x3,

α2 =
x1x2 + x2x3 + x3x1

x1 + x3
,

α3 =
x1x2x3

x1x2 + x2x3 + x3x1
,

x1 + x2 + x3 = 1. (18)

The Λ is a momentum cut-off, and λp is the physical coupling constant. We obtain the
expression by identifying the physical parameters as the renormalized parameters at Λ = 0.
This equation shows that when m2

p ≥ 0, γ2(0) must be positive since the second term is
negative, inferring from the numerical computation. The boundary between the two regions
satisfies the continuation version of Eq. (16). The solution of RG flow [11] (Fig. 6) always
shows the trivial condensation. Therefore, we only consider the ϕ0 = 0 case here. As a
result, there is no spontaneous symmetry breaking since ⟨ϕ⟩ ∝ ϕ0.

Next, we turn to the physical coupling λp, determined by computing the connected four-
point function. Performing the integration up to two-loop, we show the result in Fig. 6
where we illustrate the relation between λp and the parameters. To estimate the Landau
pole (when P = 1), we use a quantity P that involves finding the absolute value of the ratio
between one-loop and tree results.

We summarize the dependence of γ2(0), λ, m2, and the P on the cutoff Λ in Fig. 6. γ2(0), λ,
and P monotonically increase for Λ. The bare coupling constant λ is monotone for Λ, sig-
naling quantum triviality. The transition line in Fig. 5 corresponds to γ2(0) = 0. When
substituting this condition into Eq. (17), the physical requirement m2

p ≥ 0 forces λp = 0
since the coefficient multiplying λ2

p is negative. The quantum triviality happens, protected
by the transition line γ2(0) = 0 (Gaussian fixed-point).

The above analysis shows that the VEV ⟨ϕ⟩ vanishes. Therefore, there is no spontaneous
symmetry breaking in the ϕ4 theory alone, even with quantum corrections included. Hence
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we expect that the symmetry breaking, or said differently, a nonzero ⟨ϕ⟩ in our nature,
should arise from the interaction between the Higgs field with other matter fields.

6 Outlook

We provided a method for quantizing and analyzing strongly coupled field theories using an
adaptive perturbation approach [5, 6] and diagrammatic methods. This method likely in-
volves perturbing the theory away from known solvable points and treating the perturbation
as a small parameter to perform calculations. Instead of quantizing scalar fields directly, we
quantized the fields that act on states. This approach simplifies the calculations and makes
them more tractable. The quantization method is extended to handle interacting theories.
This is crucial as most real-world field theories involve interactions between fields. Instead
of organizing the computations based on operators, we devised diagrammatic methods. Di-
agrams can be a powerful tool to visualize and resum certain types of calculations, making
them more manageable. The diagrammatic technique involves resumming one- and two-
point functions. The resummation likely helps capture strongly coupled effects and enhance
the accuracy of the calculations. The results obtained using our method compared to lattice
simulations. The fact that they matched provides evidence for the validity and efficacy of
our approach. The resummation technique can be easily applied to fermion field theories,
suggesting that our approach is versatile and can be used for a broad range of field theories.
Based on the success in handling various aspects of field theories and matching lattice sim-
ulations, we conclude that our approach has generic applicability in strongly coupled field
theories. This implies that it can be utilized to study and understand a wide class of systems
where standard perturbative methods might not be sufficient. Overall, our work appears to
be a promising and powerful approach to tackling strongly coupled field theories, allowing
for more accurate and efficient calculations. It would be interesting to see how our method
can be further applied and tested in different scenarios and extended to other field theories.

Our computation method provides evidence of the loss of SSB in λϕ4 theory. The self-
interaction term is not enough to generate a non-trivial vacuum. Experimental observation
is consistent with the SSB. Therefore, our results suggest that the generation of SSB needs
other matters interaction.
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