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1 Introduction

It is a sort of ultimate question to examine the continuity of a quantum measurement subject
theoretically and has not yet been resolved within a scientific framework. The purpose of this
article is to approach this question based on the author’s previous work on the holographic
principle and quantum measurement theory and to argue that the continuity of a quantum
measurement subject follows as a fundamental consequence of the holographic principle
[1, 2, 3] after the classicalization of the quantum state of the bulk space.

In this article, all arguments are based on the following two equations in the three-
dimensional anti-de Sitter spacetime/two-dimensional conformal field theory (AdS3/CFT2)
correspondence, which is a known example of the holographic principle [4, 5]:

I. Quantum ground state. Namely, the low-energy limit of bulk quantum gravity before
the classicalization: (

ĤCFT − Egnd

)
|ψ⟩ = 0 . (1)

Here, ĤCFT is the Hamiltonian operator of the boundary CFT2 at the strong-coupling
limit, and Egnd is its ground state energy (i.e., a negative Casimir energy).

II. Euclidian bulk action. Namely, the holographic principle after the classicalization of
the quantum ground state |ψ⟩ [6, 7, 8]:

Ibulk[|ψ⟩, γτ ] = −ℏH[|ψ⟩] + SE [γτ ] . (2)

Here, γτ is the trajectory of a non-relativistic free particle in the Euclidean bulk
spacetime, SE is the Euclidean action of this particle, and H is the Shannon entropy
(i.e., the von Neumann entropy of the diagonal classicalized quantum state) in nats.

Throughout this article, quantum measurement refers to a process in the ensemble inter-
pretation of quantum mechanics [9].

We organize the rest of this article as follows.
In Sec. 2, we summarize the results obtained so far in the context of quantum mea-

surements [8, 10]. In Sec. 2.1, we argue that the theory is fundamentally formulated in
the Euclidean regime by the Euclidean bulk action (2). In Sec. 2.2, we transfer the time
evolution from imaginary time to real time by the inverse Wick rotation.

In Sec. 3, we present the main argument of this article. In Sec. 3.1, we describe the
physical transfer of a quantum measurement subject accompanying the extinction of the
subject of a quantum measuring system. In Sec. 3.2, we manifest the continuity of the
quantum measurement subject.

In Sec. 4, we summarize the subjects of quantum measurement in imaginary time and
real time, and their relations.

2 Quantum measurements

2.1 Euclidean regime

On the codimension-one boundary spacetime of AdS3 spacetime, CFT2 at the strong-
coupling limit is in the quantum ground state |ψ⟩, and we construct the quantum state of the
bulk space by classicalizing the multi-scale entanglement renormalization ansatz (MERA)
of |ψ⟩ [6, 7, 11, 12, 13]. Here, classicalization means the exact and complete loss of quan-
tum coherence in the Hilbert space of each qubit constituting the MERA by application of
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the superselection rule, where the superselection rule operator is the third Pauli matrix σ3.
Here, at each site (disentangler) of the bulk space, the statistical mixture of eigenstates of
a spin operator gives a ln 2 nat increment of the von Neumann entropy (the measurement
entropy) of the quantum state of the classicalized bulk space [7]; the spin operator is locally
defined at each site [7, 8]. The total amount of the measurement entropy in bits is the
number of sites in the classicalized bulk space [7].

The division of the off-shell value of the Euclidean action of a free particle moving in the
bulk space in imaginary time by the Dirac constant ℏ and the bit factor b = ln 2 means the
information of the sequence of spin eigenstates in the mixture of spin eigenstates [8]; this
mixture is locally owned by the bulk space itself at each site [7, 8]. Namely, the process
of this imaginary-time motion is the sequence of readouts of spin events from the mixture
of spin events on the boundary spacetime [8]. Thus, due to the imaginary-time motion of
free particles in bulk space, in imaginary time, the quantum spin measurement process of
the quantum ground state |ψ⟩ on the codimension-one boundary spacetime is realized in the
exact and complete form as follows:

Quantum ground state |ψ⟩ −→ Mixture of spin eigenstates: classicalization −→ Mixture of
sequences of spin eigenstates.

Here, the mixture of sequences of spin eigenstates means the sequence of readouts of spin
events due to the Euclidean action of free particles in the imaginary-time motion in the bulk
space.

Here, we stress that the bulk space is the measurement entropy of the classicalized quan-
tum ground state |ψ⟩ [7].

2.2 Lorentzian regime

The real-valued classical probability in the mixture of sequences of spin events, which results
from the quantum spin measurement process of the quantum ground state |ψ⟩, becomes a
complex-valued quantum probability amplitude by the inverse Wick rotation. Thus, in real
time, for a quantum mechanical event to occur, a quantum measurement by a quantum
measuring system must be done.

Here, the quantum measuring system is a macroscopic composite system [14, 15], which,
in real time, can change the quantum probability amplitude of a measured system in the
bulk spacetime, namely, the quantum pure state, to its classical mixed state (i.e., its diag-
onal part as a mixture of eigenstates) with respect to the discrete measured observable by
the interaction with the measured system (non-selective measurement) and can change the
classical mixed state to a classical pure state (event reading).

Concretely, subject to the orbital superselection rule (which restricts the complete set
of orbital observables of the center of mass of a macroscopic system to an Abelian set
of simultaneously measurable classical observables [16]), the Hamiltonian (which gives rise
to the measurement process by a quantum measuring system), except for the free parts,
consists of the von Neumann-type interaction with the center of mass of a macroscopic
system [14, 15].

Here, there are two kinds of the macroscopic system. In the realization of non-selective
measurement [14], the system is a macroscopic detector, whose center of mass interacts with
the measured system. In the realization of event reading [15], the system is a macroscopic
Bose–Einstein condensate with spontaneously broken spatial translational symmetry, whose
center of mass interacts with a quantum mechanical system having a discrete meter variable
for the event reading. The orbital superselection rule gives rise to the classical mixed state
of Planck cells in the phase space as the quantum state of a macroscopic system [16].



84 Eiji Konishi

3 Continuity of the subject of quantum measurement

In the following, we define the presence or absence of the subject by the presence or absence
of event reading by a quantum measurement, respectively.

3.1 Description

Here, we invoke the idea of integrated information theory (IIT) proposed by Tononi [17]. In
the author’s opinion, the most important idea in IIT is to quantify the level of the subject
of a quantum measuring system, and then to abandon the concept of self-identity, which
means the maintenance of the consistency of the subject of a quantum measuring system.

We state this in a more concrete form.1 First, we define the integrated information for
the event reading quantum mechanical system as a discrete dynamical system. We define
the integrated information for the dynamical causal structure in this system and the state of
this system—namely, the event of this system read out by itself—at an instance (say, t = 0)
by the minimum amount of lost information in the a posteriori state distribution of this
system just before the readout instance (say, t = −1) by the possible cuts of the dynamical
causal relations between elements of this dynamical system [18]. Second, we quantify the
level of the subject of a quantum measuring system by the capacity of integrated information
owned by the subject of this quantum measuring system [17]. Based on this quantification
of the level, we can describe the process of complete loss of the level of the subject of a
quantum measuring system, in which the concept of self-identity collapses, as a physical
process in real time.

In real time, the physical process of the extinction of the subject of a quantum measuring
system consists of two steps:

1. The complete loss of the capacity for integrated information owned by the subject of the
quantum measuring system, namely, the level of the subject of the quantum measuring
system. Here, the self-identity applied to the subject of the quantum measuring system
is resolved.

2. The physical extinction of the quantum mechanical events themselves. Furthermore,
the real-time evolution of the quantum measuring system becomes a unitary process.

However, equivalently corresponding to the unitary real-time evolution of free particles
in a quantum pure state in the bulk space, in imaginary-time evolution, quantum spin
measurements continue; namely, spin events continue to occur. Here, the completely self-
identical hologram, namely, the quantum ground state |ψ⟩ on the codimension-one boundary
of the bulk space, is the unique subject of quantum measurements.

Specifically, we can conclude that the physical transfer of the subject of quantum mea-
surement accompanying the extinction of the subject of a quantum measuring system is the
following.

i. The dimensional descent from the quantum state of the quantum measuring system
as a macroscopic composite system in the bulk spacetime to the classicalized quantum
ground state |ψ⟩ of the hologram on the codimension-one boundary spacetime through
the extinction of the subject of the quantum measuring system.

and

1For simplicity, we explain IIT 2.0 [18, 19]. The original paper of IIT 3.0 (resp., IIT 4.0) is Ref. [20]
(resp., Ref. [21]).



A Remark on Quantum Measuring Systems and the Holographic Principle 85

ii. The transfer of the time evolution equivalently from real time to imaginary time by
the Wick rotation at the time i.

Here, the information acquired by the classicalized quantum ground state |ψ⟩, as the
unique subject of quantum measurement, in the imaginary-time evolution is the information
generated by the imaginary-time motion of all free particles in the bulk space [10].

3.2 Manifestation

We denote by Φmax the capacity of integrated information owned by the subject of a quantum
measuring system. By using the notation in Ref. [10], we can express process 1 as the
extinction of the experience [17] and process 2 as the extinction of the existence in the
Lorentzian regime [10], along with their respective reverse processes 4 and 3, by the following
diagram:

Φmax > 0

��

1 // Φmax = 0

tt ��

4 //

**

Φmax > 0 .

��
Sv.N. > 0 , I ≥ 0

2

))

2 // Sv.N. = 0 , I = 0

a.c.
��

3 // Sv.N. > 0 , I ≥ 0

Sv.N. = ATN , I =
SE

ℏb

3

55

(3)

Here, Sv.N. is the von Neumann entropy, in bits, of the quantum state of the quantum
measuring system in the second line (the Lorentzian regime) and the classicalized hologram
in the third line (the Euclidean regime), I is the information in bits acquired by the quantum
measuring system in the second line and the classicalized hologram in the third line, and
ATN is the number of sites in the classicalized bulk space. The dotted arrow indicates the
analytic continuation (a.c.) from the Lorentzian regime to the Euclidean regime [10].

This diagram manifests the continuity of the subject of quantum measurement. Indeed,
by taking out the subject of quantum measurement from this diagram, we obtain

Φmax > 0

��

1 // Φmax = 0

tt

4 //

**

Φmax > 0 .

��
Sv.N. > 0 , I ≥ 0

2

))

Sv.N. > 0 , I ≥ 0

Sv.N. = ATN , I =
SE

ℏb

3

55

(4)

Here, processes 2 and 3 are accompanied by the Wick rotation and the inverse Wick rotation,
respectively.

4 Summary

We summarize this article in the following four points.
In imaginary time (the Euclidean regime), the subject of quantum measurement is the

classicalized hologram on the boundary spacetime only.
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In real time (the Lorentzian regime), the subjects of quantum measurement are the
quantum measuring systems in the bulk spacetime only.

The quantum measurement process in the Euclidean regime is equivalent to path integral
unitary quantum mechanics in the Lorentzian regime via the inverse Wick rotation.

By the extinction of the subject of a quantum measuring system, the Lorentzian regime
becomes equivalent to the Euclidean regime via the Wick rotation.
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