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1 Introduction

The present article is the �rst of a series by the same author meant to provide a mathematical
explanation of the claims made in two previous works, [1, 2]. In doing so, we highlight
interesting connections with theoretical physics results, quoting part of the most relevant
literature wherever possible.

Our main aim is understanding the underlying mathematical structure associated with
the partition function, correlation functions, and spectrum of operators of a given quantum
�eld theory (QFT). Speci�cally, we focus on supersymmetric gauge theories obtained by
dimensional reduction of 6D N = (2, 0) SCFTs, [3, 4, 5, 6, 7].
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Figure 1: Partial reproduction of a diagram displayed in [7]. The �rst part of our treatment focuses
on the functorial �eld theory description of class S theories and their Higgs branches in terms of
2D TFT cobordism constructions.

As explained in [1, 2], for a theory, T , to be absolute, the following triple needs to be
de�ned

T ←→ (F , µ,Z)

]
, (1)

where F is the �ber functor, µ the moment map, and Z the Drinfeld center of a given theory1.
Consistency of the underlying mathematical structure requires these three quantities to be
mutually related. Indeed, upon de�ning any one of them, the other two should automatically
follow. The purpose of [1, 2] and the present work is to show that an apparent shortcoming
in de�ning such triple corresponds to the emergence of interesting physics, rather than being
a fault of the sought after absolute theory. In particular, we will show that this can be used
to explain the emergence of non-invertible symmetries separating di�erent class S theories,
[1, 8, 9, 10, 11, 12, 13, 14]2.

The crucial references we rely upon are the works of Moore and Segal, [17], and Moore
and Tachikawa, [18]. As brie�y reviewed in the following sections, [18] proposes a rede�nition
of class S theories (cf. �gure 1) in terms of a 2D TFT, namely the functor

1We refer to [1] for a detailed explanation of this terminology.
2For some background knowledge on class S theories and their 6D origin, we refer the interested reader

to [15, 16].
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η
GC

: Bo
2
→ HS

]
(2)

with Bo
2
and HS denoting the bordism 2-category and the holomorphic symplectic 2-

category, respectively3, associated to a given 4D N = 2 SCFT. The de�nition of (2) strongly
relies upon assuming, that both, the source and target categories, enjoy a duality structure
which, in turn follows from the presence of an identity element in both categories. In [18],
the authors show that, under the duality assumption, for the categories in (2) to be well-
de�ned, it is enough to specify their objects and 1-morphisms. Throughout our treatment,
the 1-morphisms are homomorphisms, and are simply denoted by Hom. Essentially, the
objects of Bo

2
are circles, S

1

, and the 1-morphisms are cobordisms between di�erent dis-
joint unions of circles and the empty set. Their respective counterpart on the holomorphic
symplectic side correspond to the gauge group, [18],

η
GC

(
S

1
)

def.
= GC , (3)

and the cobordism operators, [18],

η
GC

(
Hom

(
S

1

, ∅
))

def.
= U

GC
(4)

η
GC

(
Hom

(
S

1

t S
1

, ∅
))

def.
= V

GC
(5)

η
GC

(
Hom

(
S

1

t S
1

t S
1

, ∅
))

def.
= W

GC
. (6)

respectively.
Importantly for us, the Moore-Tachikawa varieties described by (3), (4), (5), and (6)

constitute the quiver gauge theory4 realization of [17], where Moore and Segal propose the
mathematical formalism needed for addressing the following question: given a certain closed
string theory background, what is its corresponding D-brane content5?

Our aim is that of explaining how and why one needs to generalize the construction of
[18] from a higher-categorical point of view, and what its implications are on the theoretical
physics side. In doing so, we highlight the crucial properties and axioms satis�ed by the
cobordism operators outlined in [17, 18], and how they can be generalized to account for
more general setups from, both, the mathematical and theoretical physics perspectives.

In particular, we emphasize the dependence of (2) on the conformal structure of the
Riemann surface on which the compacti�cation of the 6D N = (2, 0) SCFT has been per-
formed to achieve a certain class S theory and how lack of reparametrization invariance,
corresponding to the absence of the identity element in its source and target categories, [18],
signals the presence of (non-invertible) categorical symmetries separating di�erent absolute
theories.

At the heart of this is the correspondence sketched in �gure 2.
In [1] we explained how gauging a Symmetry Topological Field Theory (SymTFT) en-

ables to change the boundary conditions of the �elds living in the absolute �eld theory
resulting from the Freed-Moore-Teleman construction, [20, 21, 22, 23, 24, 25]. To each
gauging corresponds a choice of triples, (2), and, for any absolute theory, it is enough to

3For more details, we refer the reader to section 3.
4Among the cobordism operators is the Higgs branch of class S theories, (6).
5Note that this is essentially the same question addressed in [19].
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Figure 2: Adaptation of a correspondence �rst proposed in [1] playing a key role towards general-
izing [18] to the hyperkähler target category case. As explained in section 4, this also requires the
generalization of cobordism operators, [17], due to the lack of reparametrization-invariance of the
Riemann surface on which the compacti�cation of the 6D N = (2, 0) SCFT is performed.

de�ne one of the three entries on the RHS of (2) to determine the other two. For the pur-
pose of this article, we will mostly focus on the second, namely the moment map, de�ned
as follows

µ : G → A, (7)

where G is an n-categorical structure, and A is the algebra of invertible topological defects
associated to the action µ (G). Gauging means taking the categorical quotient with respect
to G (in notation //

µ
G), and projecting its image under µ to the identity6. Practically, one

could perform a total gauging of the theory by choosing A such that the overall spectrum
of the theory of the gauged theory is only the (new) identity element. For the purpose
of our work, instead, we are interested in understanding mathematical structures arising
by gauging with respect to di�erent subalgebras within A, that are mutually intersecting,
albeit not contained within each other. The ultimate aim is that of explaining the emergence
of (non-invertible) categorical symmetries in certain supersymmetric quiver gauge theories
once described in terms of Coulomb branches of magnetic quivers of 3D N = 4 quiver gauge
theories, which is the main focus of an upcoming paper by the same author, [26]. In such
analysis we will be applying some of the �ndings of [27, 28].

This article is structured as follows: section 2 is devoted to a brief overview of cochain
level theories as the most important generalization of the open and closed TFT construction.
Mostly relying upon [17], we highlight the importance of the construction of the cobordism
operator, highlighting its dependence on the conformal structure of the Riemann surface.
In section 3 we then turn to the discussion of a particular 2D TFT valued in a symmetric
monoidal category, namely the maximal dimension Higgs branch of class S theories. After
brie�y reviewing the properties outlined in [18], in section 4 we propose their generalization
for the case in which the target category of the η

GC
functor is a hyperkähler quotient.

We conclude by outlining the possible extension of this treatment towards a mathematical
formulation of magnetic quivers within the context of Coulomb branches of 3D N = 4 quiver
gauge theories which will be addressed in an upcoming work by the same author, [26].

6We thank Nathan Seiberg for instructive discussion regarding the appropriateness of the terminology to
be adopted in describing this formalism.
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2 Cochain level theories

This �rst section is devoted to a brief overview of cochain level theories as the most important
generalization of the open and closed TFT construction. The reason for doing so is that
these mathematical structures are central to the idea of D-branes, [17], enabling to determine
the set of possible D-branes given a closed string background. In their work, [17] address
this problem from the point of view of a 2D TFT, (2), where the whole content of the theory
is encoded in a �nite-dimensional commutative Frobenius algebra.

The present section is therefore structured as follows:

1. At �rst, we brie�y overview cochain complexes as the essential mathematical tools
needed for translating the setup of our previous work, [1], in the formalism of Moore
and Segal.

2. We then turn to highlighting the construction of cobordism operators, [17], emphasiz-
ing its dependence on the conformal structure of the Riemann surface.

2.1 Cochain complexes

A cochain complex, (A
•
, d
•
), is an algebraic structure that consists of a sequence of abelian

groups (or modules), A
•
, and a sequence of homomorphisms between consecutive groups,

d
•
, such that the image of each homomorphism is included in the kernel of the next. To a

chain complex, (A• , d•), there is an associated homology, which describes how the images
are included in the kernels. A cochain complex is similar to a chain complex, except that its
homomorphisms are in the opposite direction. The homology of a cochain complex is called
its cohomology

H(C) def.
= Ker(Q)/ Im(Q). (8)

The nth cohomology group, H
n
(H

0

) is

Hn

def.
= Ker dn/ Im dn+1 . (9)

The central object in closed string theory is the vector space C ≡ C
S

1 of states of a single

parametrized string. C denotes the cochain complex in this case, [17]. The latter comes
equipped with a grading given by the ghost number, and an operator Q : C → C called
the BRST operator, raising the ghost number by 1, and such that Q2 ≡ 0.

2.2 The Moore-Segal setup

The most general �nite-dimensional commutative algebra over the complex numbers is of
the form

C def.
=

⊕
x

Cx , x ∈ Spec (C), (10)

with

Cx
def.
= C Ex ⊕ mx , (11)

where Ex is an idempotent, and mx a nilpotent ideal. If C is a Frobenius algebra, then so
too is each C

x
.
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In their treatment, [17] restrict to the semisimple7 case. Semisimplicity admits many
equivalent de�nitions:

1. The presence of simultaneously-diagonalizable fusion rules.

2. There exists a set of basic idempotents E
x
such that

C def.
=

⊕
x

C E
x

, x ∈ Spec (C), with E
x
E
y
≡ δ

xy
E
y
. (12)

3. C is the algebra of complex-valued functions on the �nite set of characters of C, X ∈
Spec (C).

For any pair of boundary conditions, a, b, the corresponding cochain complex for a
semisimple category is de�ned as follows, [17],

O
aa
'
⊕
x

End
(
W

x,a

)
, (13)

O
ab
'
⊕
x

Hom
(
W

x,a
;W

x,b

)
, (14)

where W
x,a

is a vector space associated to every idempotent E
x
.

2.3 Cobordism operators

We now turn to the key elements for our analysis. In this �rst section we will be using the
de�nition provided by [17], highlighting the crucial property that will be mostly needed in
sections 3 and 4. A cobordism Σ from p circles to q circles gives an operator

U
Σ,α

: C
⊗p
→ C

⊗q
, (15)

which depends on the conformal structure α on Σ. This operator, (15), is a cochain map,
but its crucial feature is that, changing the conformal structure α on Σ, changes U

Σ,α
only

by a cochain homotopy.
To describe how U

Σ,α
varies with α, ifM

Σ
is the moduli space of conformal structures on

the cobordism Σ which are the identity on the boundary circles, there is a resulting cochain
map

U
Σ

: C
⊗p
→ Ω

(
M

Σ
; C
⊗q
)
, (16)

with the target denoting the de Rham complex of forms onMΣ with values in C⊗q .
An alternative equivalent de�nition is that of the following cochain map

U
Σ

: C
•

(M
Σ

) →
(
C
⊗p
)∗
⊗ C

⊗q
. (17)

In the next sections, we will show that lack of reparametrization-invariance of the Rie-
mann surface implies interesting mathematical and physical features of the resulting theory
of interest.

7Despite appearing quite restrictive, committing to semisimplicity is enough to shed light on the essential
structure of the theory. According to [17], to go beyond it, the appropriate objects of study, are cochain-
complex valued TFTs rather than non-semisimple TFTs in the usual sense.
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Key points

The main points to keep in mind throughout the remainder of our treatment are the follow-
ing:

� Cochain level theories provide the natural mathematical formalism for describing abso-
lute theories obtained by partial gaugings of the SymTFT in the Freed-Moore-Teleman
setup.

� The de�nition of cobordism operators associated to such complex cochain structure
follows from the assumption that the Riemann surface is reparametrization-invariant.

3 Moore-Tachikawa varieties

Having outlined the importance of reparametrisation-invariance in the de�nition of bordism
operators, [17], we now turn to the particular application in describing maximal dimensional
Higgs branches of class S theories, as �rst proposed by [18]. Our major contribution in the
present section will be highlighting where upgrades to the categories de�ned in [17] are
needed for dealing with setups as the ones associated to the correspondence depicted in
�gure 2, namely those leading to the emergence of composite class S theories separated by
a non-invertible defect.

This section is structured as follows:

1. At �rst, we brie�y overview the source and target categorical structure proposed in
[18] assuming duality.

2. We then explain what categorical duality means from an algebraic perspective.

3. We conclude the section indicating the relation between Moore-Tachikawa varieties
and Coulomb branches of quiver gauge theories as an interesting realization of 3D
mirror symmetry, and how the categorical generalization proposed in this work suggests
interesting applications to quiver varieties that will be addressed in more detail in [26].

3.1 Categorical structure assuming duality

As already mentioned in the Introduction, to a given class S theory, one can assign a 2D
TFT valued in a symmetric monoidal category, [18],

η
GC

: Bo
2
→ HS

]
(18)

The existence of this 2D TFT relies on the source and target categories satisfying a
certain list of properties, [18]. We will not reproduce all of them in our treatment, and refer
the interested reader to the original work of Moore and Tachikawa for a detailed explanation.
In this �rst part of the section, we will only point out some of the crucial assumptions made
in their work for reasons that will become clear in the following pages.
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Duality

For the purpose of our work, the crucial assumption made in [18] is the duality structure
of the source category Bo

2
. As explained in [18], duality implies that the 2-category Bo

2
is

fully speci�ed by its objects, S1, and 1-morphisms, namely the bordisms depicted in �gure
3. The middle bordism, i.e. the one labeled V , is the identity bordism. One can easily
see this by noticing that V is topologically equivalent to a cylinder whose edges are the red
circles, i.e. the object of 2-category Bo2 (the closed string we were referring to in section 2).

For η
GC

to be well de�ned, the source and target categories are required to satisfy cer-
tain sewing relations, [17, 18]. This practically means that, compositions between morphisms
should close. In particular, the identity itself can be de�ned in terms of composite homo-
morphisms as follows,

U
GC
◦ W

GC
≡ T

∗
GC

]
, (19)

where T
∗
GC ≡ V GC . Indeed, one can easily see that combining the �rst and third bordism

in �gure 3, is topologically equivalent to V .
8

U ≡ V ≡

W ≡

Figure 3: Basic bordisms assuming duality of, both, the source and target categories leading to
the de�nition of the identity element, VGC

, and the maximal dimensional Higgs branch, WGC
.

We therefore wish to highlight the following

Main point: Duality ensures the presence of an identity associated to a certain gauge

group, GC ≡ ηGC
(S

1

), (3).

Key axiom

(19) is essential for us in relating the formalism of [17, 18] to the setup of �gure 2. In
particular, it is what leads to the de�nition of the triple featuring on the RHS of (1). To see
this explicitly, let us recall a crucial axiom required to be satis�ed by (18), and, therefore,
in turn by (19), [18].

For X ∈ Hom (G
′

C
, GC) and Y ∈ Hom (GC , G

′′

C
), their composition

8Indeed, V is topologically equivalent to the cylinder, i.e. the cobordism between S
1
and itself.
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Y ◦ X ∈ Hom (G
′

C
, G
′′

C
) (20)

is identi�ed with the holomorphic symplectic quotient

Y ◦ X def.
= X × Y // GC

= {(x, y) ∈ X × Y | µ
X

(x) + µ
Y

(y) = 0} / GC ,
(21)

where

µ
X

: X −→ g∗
C

, µ
Y

: Y −→ g∗
C

(22)

are the moment maps of the action of GC on X and Y , with gC the Lie algebra associated
to GC . The identity element

T
∗
GC

def.
= id

GC
∈ Hom (GC , GC) (23)

comes with a Hamiltonian GC × GC action. As also explained in [18], to see that T
∗
GC

acts as the identity, it is enough to consider a composition of homomorphisms, T
∗
GC ◦ X.

Identifying T
∗
GC ' GC × gC , and identifying an element of T

∗
GC as (g, a). The moment

map condition, (21), reduces to

a+ µ(x) = 0, (24)

from which a can be removed. Consequently, the induced 2-form on the solution space is
GC -invariant and basic. Upon taking the quotient with respect to GC , we can gauge g to 1,
leading to a holomorphic isomorphism with the original X space with its symplectic form.

The categorical quotient taken in de�ning the composition (21) is equivalent to the one
that a given absolute theory should be equipped with to potentially gauge away its entire
operator content, while leaving only the identity in the spectrum9. Indeed, this is true as
long as the embeddings of the subalgebras associated to G

′

C
and G

′′

C
are subsets of each other

within the mother algebra gC . However, we are interested in describing more general setups,
where the embeddings of the algebras are intersecting albeit not one included within the
other. In the remainder of our treatment, we will explain that, for this to be described in
the formalism of [17, 18], the standard identity element associated to the gauge group GC

and embedding Lie algebra gC needs to be removed from Bo
2
, while being replaced by a new

composite bordism, and propose the de�nition of a new functor.

3.2 Duality from an algebraic perspective

Before turning to explaining what are the changes that the source and target categories
should undergo10, we will brie�y pause for a digression explaining how reparametrization-
invariance of the Riemann surface involved in the de�nition of the bordism operators, out-
lined in section 2, is strongly related to the aforementioned duality assumption.

As explained in [18], the crucial point is that, thanks to the duality propriety of the source
2-category Bo

2
, the identity element in the target category, T

∗
G

C
, is reparametrization-

invariant. In particular, one could compose the identity morphisms as follows11

9cf. explanation in the Introduction. This is basically what leads to the de�nition of the �ber functor,
moment map and Drinfeld center.

10Which will be the core topic of section 4.
11Making use of the axiom (21).
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T
∗
G
a′

C
◦ T

∗
G
a

C
≡
(
T
∗
G
a

C
× T

∗
G
a′

C

)
//G

C
. (25)

From the considerations made above, it therefore follows that one could rephrase (25)
as the de�nition of the Drinfeld center for the composite system made up of two class S
theories (associated to the two gauge groups involved) separated by an invertible defect,
with the latter ensuring reparametrization invariance of the Riemann surface [17].

Concretely, under the duality assumption, one could gauge away either of the two groups,
while being left with the following

1
G
a
′

C

◦ T
∗
G
a

C
≡

(
T
∗
G
a

C
× 1

G
a
′

C

)
//G

C
. (26)

If the conformal structure were the same on the two sides, then it would be the same,
either with or without the composition rule. If

G
a

C
× G

a
′

C
≡ G

a+a
′

C
≡ G

C
, ∀a, a′, (27)

then (25) can be recast to the following

T
∗
G
a

C
≡ T

∗
G
a

C
// G

C

]
, (28)

which is equivalent to a statement of S-duality. Once more, we highlight that this is possible
because the source category for the 2D TFT associated to the group G

C
contains the identity

element. But, in case this is not true12, (28) needs to be changed accordingly, which one
could think of as a generalization of an S-duality statement. Indeed, if the group composition
rules don't hold,

G
a+a
′

C
6= G

C
, ∀a, a′, (29)

we get something that is not simply the ordinary S-dual theory, (28).
The main purpose of our work is basically to go backwards, starting from the LHS of

(25) and determining what the RHS should be. Most importantly, we need to:

1. Identify G
C
in the new theory obtained by composing the two theories on the LHS,

each one characterized by a di�erent choice of conformal structure on the Riemann
surface.

2. Equivalently to 1., reconstruct T
∗
G

C
, namely the identity of the composite theory.

3. We highlight that the most important generalization of the 2D TFT (21) that one
should really be using for the case of interest to us is instead the following

η̃
GC

: Bo2\ V → HK

]
(30)

which, as already pointed out in [18], requires removing the identity element from the
source category. Its e�ect on the target is to turn it into a hyperkähler quotient. Its
connection with theoretical physics13 is the main focus of [26].

12Such as the case in which the Riemann surface is no longer reparametrization-invariant.
13Already presented in [2].
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From step 1., an important observation is in order. G
C
acts on the two factors on the

RHS of (25) in separate ways. This is part of the meaning of the generalization of S-duality
that we were previously referring to. Indeed, the categorical quotient //G

C
tells us what

the identity is as a result of gauging a certain subalgebra. This is obtained by taking the
1-morphisms on either side of the correspondence and taking their nontrivial composition
w.r.t. T

∗
G

C
, with the latter being the identity in the target category. But the latter was

assumed to be removed. The immediate suggestion to circumvent this shortcoming is that
the functors de�ning the identity element of each individual theory on the LHS of (25) is
di�erent w.r.t. the one on the RHS. In section 4 we therefore propose the generalization
of S-duality as the need to de�ne two di�erent 2D TFT functors associated to the left and
right hand sides of (25).

3.3 Algebraic Varieties

In the concluding part of this section, we highlight an interesting application of (30) in the
context of quiver gauge theories, which will be explained in more detail in an upcoming
work by the same author, [26], in particular towards generalizing 3D mirror symmetry.

The Higgs branches described by Moore and Tachikawa are known to have been repro-
duced by [27] as the Coulomb branches of 3D N = 4 supersymmetric quiver gauge theories.
Such correspondence is therefore equivalent to a statement of 3D mirror symmetry. The
purpose of [26] is to explain what the 3D dual of a theory described by (30) is in terms of
Coulomb branches of 3D N = 4 quiver gauge theories. In this way, we expect to be able to
prove the statements made in [2].

If V has been removed from the source, one should expect there to be more than one
2D TFT of the kind (18) associated to two di�erent gauge groups whose embedding in the
gauge group associated to the original TFT with identity element V is not simply a cochain
complex. Correspondingly, this also means that there is more than one 1-morphism U

GC
.

Given that the identity of the embedding theory is de�ned as follows

U
GC
◦ W

GC
≡ T

∗
GC

]
, η

GC
(V ) ≡ T

∗
GC

]
. (31)

and that

U
GC

def.
= GC × Sn ⊂ GC × gC ' T

∗
GC . (32)

with S
n
is the Slodowy slice at a principal nilpotent element n. The physical theories of class

S predict the existence of a variety W
GC

satisfying the properties needed to de�ne a TFT

η
GC
. From the duality assumption, it follows that the dimensionalities of the two varieties

are related as follows

dimC UGC

def.
= dimC GC + rank GC . (33)

dimC WGC

def.
= 3 dimC GC − rank GC . (34)

However, if the identity needs to be removed from Bo2 , T
∗
GC is not the identity and,

in particular (34) needs to be rede�ned precisely because the source is no longer a dual
category. How to rede�ne (34) will be explained in [26].

As a concluding remark to what we have just said, in [17] they conjecture the following

property for the moment maps associated to the G
3

action on the Higgs branch W
GC
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µ
i

: W
GC
→ g

∗

C
, i = 1, 2, 3.

]
(35)

This is crucial to our analysis since (35) can be inverted to obtain the Higgs branch as
a hyperkäler quotient

W
GC
≡ µ

−1/G
3

]
. (36)

However, for the case in which the identity is removed from the source category, (36)
does not hold anymore precisely because of the lack of permutational symmetry arising in
the quotient. In [26] we will be explaining how to de�ne W

GC
and its dimensionality for the

case involving categories without a duality structure.

Key points

The main points are the following:

� Categorical duality ensures the presence of an identity object.

� S-duality requires reparametrization-invariance.

4 Moore-Tachikawa varieties beyond duality

In this concluding section, we piece together several considerations made throughout our
treatment, ultimately showing how apparent shortcomings in mathematical descriptions
might lead to interesting physical realizations.

This section is structured as follows:

1. We show why the formalism of [17] needs to be generalized if reparametrization-
invariance of the Riemann surface falls short from being satis�ed, and how this opens
up to interesting generalizations of the proposal of [18] for 2D TFTs describing max-
imal dimensional Higgs branches of class S theories14. In particular, we build the
relation with the de�nition of the �ber functor and Drinfeld center, (1).

2. We conclude highlighting interesting features of the formalism of [17, 18] in absence
of reparametrization-invariance of the Riemann surface, connecting them to the emer-
gence of intrinsically non-invertible symmetries separating di�erent class S theories,
[1].

4.1 Categorical structure without duality

As explained in the previous section, removing the identity element in Bo
2
requires having to

introduce at least two di�erent functors η
G
′
C
, η

G
′′
C
, whose action on the circle and its bordism

reads as follows

η
G
′
C

(
S

1
)
≡ G

′

C
, η

G
′′
C

(
S

1
)
≡ G

′′

C
(37)

14The latter will be the core topic of section 4.
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η
G
′
C

( U ) ≡ U
G
′
C
≡ G

′

C
× Sn ⊂ G

′

C
× g

′

C
' T

∗
G
′

C
, (38)

η
G
′′
C

( U ) ≡ U
G
′′
C
≡ G

′′

C
× S

n
⊂ G

′′

C
× g

′′

C
' T

∗
G
′′

C
, (39)

η
G
′
C
, ( V ) ≡ V

G
′
C

def.
≡ T

∗
G
′

C
, (40)

η
G
′′
C

( V ) ≡ V
G
′′
C

def.
≡ T

∗
G
′′

C
, (41)

where we are assuming

g
′

C
∩ g

′′

C
6= {∅} , and g

′

C
∪ g

′′

C
≡ g

C
, (42)

g
′

C
6⊂ g

′′

C
, and g

′′

C
6⊂ g

′

C
. (43)

(42) and (43) imply that the two subalgebras involved, g
′

C
, g
′′

C
are associated to di�erent

subgroups, G
′

C
, G
′′

C
, and that the identity elements di�er, T

∗
G
′

C
6= T

∗
G
′′

C
, even under

reparametrization of the Reimann surface. For each one of the 2D TFTs, η
G
′
C
, η

G
′′
C
one could

use the formalism of [17, 18], describing two di�erent class S theories, both descending from
6D N = (2, 0) by dimensionally reducing on a Riemann surface without reparemetrization
invariance. However, given the assumption that (G

′

C
, g
′

C
), (G

′′

C
, g
′′

C
) can be embedded in a

unique (GC , gC), it is natural to ask what should the triple on the RHS of (1) be for the
resulting theory to be absolute?

We know that the �ber functor and Drinfeld centers for a given absolute theory are
de�ned as follows

F : Z (Bo2) → Bo2 , (44)

Z (Bo
2
) ≡ End

Bo
2

(
T
∗
G

C

)
≡ Hom

Bo
2

(
T
∗
G

C
, T
∗
G

C

)
, (45)

both of which crucially rely upon the presence of an identity in the source and target of η
GC
.

Apparently, we run into a contradiction, since the identity element T
∗
G

C
has been removed

by assumption, thereby implying Z (Bo2) cannot be de�ned in the ordinary way. On the
other hand, one could de�ne the new identity as being a composite object de�ned in the
following way

T
∗
G̃

C

def.
= T

∗
G
′

C
⊗
T
∗
GC

T
∗
G
′′

C

]
, (46)

and therefore our proposal for (44) and (45) reads as follows

F : Z
(
B̃o

2

)
→ B̃o

2

]
, (47)

Z
(
B̃o

2

)
≡ End ˜Bo2

(
T
∗
G
′

C
⊗
T
∗
GC

T
∗
G
′′

C

)]
, (48)
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with

B̃o
2

def.
= Bo

2
/ V. (49)

In the following subsection, we will explain why (47) and (48) are reasonable proposals
for de�ning an absolute theory in absence of a categorical duality structure.

4.2 Interesting shortcomings

As explained in [1], the loss of reparametrization invariance of the Riemann surface signals
the presence of an intrinsically-non-invertible defect between di�erent class S theories. We
will now show that the setup described in section 4.1 is equivalent to that of [1].

The starting point in our argument is the conjecture (35) and (36). In absence of categor-
ical duality of, both, source and target, the 2D TFT associated to the maximal dimensional
Higgs branch of [18] is no longer associated to a moment map that is equivalent for all the

constituent S
1

s, thereby violating the conjecture made by [18]. Explicitly,

W
GC
6= µ

−1/G
3

]
. (50)

This is because the algebraic variety associated to the Higgs branch W
GC

is not a

hyperkäler quotient. In particular, it is associated to a non-primitive ideal.
Expanding further on this topic, the crucial point is that, when giving up the duality

propriety, there is no longer the identity element in the source category, T
∗
G

C
, but, rather,

there is one identity for each underlying constituent, (38) and (39).
In order to determine how the resulting composite identity element should look like, we

need to brie�y recall what was outlined in section 3.2. Given two di�erent morphisms, and
taking their composition

T
∗
G
a
′

C
◦ T

∗
G
a

C
≡
(
T
∗
G
a

C
× T

∗
G
a
′

C

)
//G

C
, (51)

we know that, under the duality assumption, the axiom (25) comes with two moment maps,
(21), each one describing the embedding of the individual morphisms within the algebra of
the mother theory. As explained in section 3.2, one actually uses the mutual relation in
between such moment maps to prove that T

∗
G

C
behaves as the identity. As also claimed in

the previous section, (51) is expresses the need to de�ne a Drinfeld center for the composite
system made up of two class S theories. In presence of reparametrization invariance, such
theories can be thought of as being separated by an invertible defect, from which (51) can
be reduced to a statement of S-duality.

On the other hand, in absence of reparametrization-invariance, the resulting class S
theories would, by de�nition, be separated by an intrinsically non-invertible defect, with the
latter being responsible for the lack of reparametrization invariance of the Riemann surface
[17].

Our main question is to �nd the Drinfeld center for a given Bo
2

F : Z(Bo
2
) → Bo

2
, (52)

and we know that, to a given �ber functor, F , there is an associated moment map

µ : G → A. (53)
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with G being Bo2 in this case, and A the algebra of invertible topological defects that
projects to the identity T

∗
GC under complete gauging of the theory. This is equivalent to

stating that T
∗
GC is the identity element once having projected over A

A //µ G with µ : G → A (54)

choosing the de�nition of the identity in the following way

T
∗
GC ' 1

GC
≡ A //µ G. (55)

For the purpose of our work, G
def.
= Bo

2
, therefore

T
∗
GC ' 1

GC
≡ A //µ Bo

2
(56)

However, in the case of section 4.1, there are two di�erent moment maps involved, one for
each choice of conformal structure on the Riemann surface, that are not mutually related
by the moment map constraint following from the axiom (25). We therefore need to �nd
the moment map (and corresponding gauge group G̃C)

µ̃ : G̃ → Ã, (57)

whose identity element

Ã def.
= A

1
⊗
T
∗
GC
A

2
(58)

constitutes the identity of the composite theory. If T
∗
GC is the identity that has been

removed from a particular source category, it still exists, but is no longer the identity present
in B̃o2 of a given η̃

GC
. From the RHS of (51), the identity of B̃o2 therefore reads

T
∗
G̃

C

def.
= T

∗
G
′

C
⊗
T
∗
GC

T
∗
G
′′

C
, (59)

such that its Drinfeld center can be determined.
De�ning µ̃ : B̃o

2
→ Ã as the moment map associated with the composite theory, the

corresponding �ber functor can be explicitly rewritten as follows

F : Z
(
η̃
−1

G̃C

(
T
∗
G̃C

))
→ η̃

−1

G̃C

(
T
∗
G̃C

)]
. (60)

ultimately enabling us to reformulate the problem of �nding the Drinfeld center to that of
identifying F for a given µ.

Key points

The main points are the following:

� Lack of reparametrization-invariance of bordism operators signals the presence of in-
trinsic non-invertible defects separating di�erent class S theories.

� De�ning the Drinfeld center for a system of composite class S theories separated by
non-invertible defects constitutes a nontrivial generalization of an S-duality statement.
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5 Conclusions and Outlook

The present article is the �rst of a series of works by the same author providing mathematical
support of the claims made in [1, 2].

At �rst, we brie�y overviewed cochain level theories as the most important generalization
of the open and closed TFT construction, emphasizing its relation to the SymTFT construc-
tion leading to absolute theories. Mostly relying upon [17], we highlighted the importance
of the construction of cobordism operators, emphasizing their dependence on the conformal
structure of the Riemann surface. In section 3 we then turned to the discussion of a par-
ticular 2D TFT valued in a symmetric monoidal category, namely the maximal dimension
Higgs branch of class S theories. After brie�y reviewing the properties outlined in [18], we
propose their generalization for the case in which the target category of the η

GC
functor is

a hyperkähler quotient. We concluded by outlining the possible extension of this treatment
towards a mathematical formulation of magnetic quivers within the context of Coulomb
branches of 3D N = 4 quiver gauge theories which will be addressed in an upcoming work
by the same author.
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