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Abstract. In this paper, we study Hawking radiation for a dilatonic BTZ black hole
solution and derive the transmission probability of tunnelling through the barrier of
the event horizon. Furthermore, we discuss the black hole chemistry of the black hole
solution under the effect of thermal fluctuation and find that the thermal fluctuation
plays a significant role for the black hole with a small horizon radius.
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1 Introduction

Gravitational force is the main force to governs the Universe at a large scale [1]. The dilaton
gravity is found interesting because of the emergence of a scalar field in the low energy
limit of string theory. The interactions of dilaton with the gauge fields have interesting
features [2, 3, 4, 5]. For instance, the dilaton field can modify the asymptotic nature of
the geometry. In the presence of Liouville-type dilaton potentials, black hole spacetimes are
neither asymptotically flat nor (A)dS [6, 7, 8, 9] because the dilaton field does not vanish
for asymptotic horizon radius.

The black hole in three dimensions is one of the interesting solutions to the field equations.
Banados-Teitelboim-Zanelli (BTZ) were the first who found three dimensional black hole
solution [10]. The BTZ black holes were generalized to introduce the dilaton field in Refs.
[11, 12].

It has been found that thermal fluctuations due to small statistical fluctuation lead to
logarithmic correction to the entropy of the black hole which plays a crucial role in the
thermodynamics of small black holes [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

The Hawking radiation as tunnelling and black hole chemistry under thermal fluctuation
for dilatonic BTZ black holes are not studied yet. Therefore, it is worth studying these
here. In the present work, we consider a constrained solution of a dilatonic BTZ black
hole. This black hole solution has a coordinate singularity. In order to avoid this, we use
the Painleve coordinate. Moreover, we calculate the transmission probability of tunnelling
through the barrier of the event horizon by assuming a pair production of particles inside
the horizon. In addition to that, we study the black hole chemistry of the given solution
under the influence of small statistical thermal fluctuation around the equilibrium. The
thermal fluctuation perturbs the equilibrium entropy of the system which is attributed to
other thermal properties of the solution. Here, we find that Gibbs free energy and Helmholtz
free energy of the system reduces to their equilibrium values under the influence of thermal
fluctuation. In fact, the effect of thermal fluctuation is more significant for the smaller sized
dilatonic BTZ black holes. We derive a particular condition for mass for which the given
black hole satisfies the first law of thermodynamics.

The paper is organized as follows. In Sec. 2, we emphasize the tunnelling for dilatonic
BTZ black hole. However, in Sec. 3, we discuss the black hole thermodynamics under the
influence of thermal fluctuation. We summarize the results in the last section.

2 Tunnelling for dilatonic BTZ black hole

The line element for the dilatonic BTZ black hole is given by [24],

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, (1)

where f(r) has the following form:

f(r) = 4r −m
√
r + (0.0691)r−1. (2)

Here, the constants in Ref. [24] are constrained to have the following values: strength
of coupling of the scalar and electro-magnetic field β = 1, arbitrary constants b = 1 and
γ = 0.5, cosmological constant Λ = −1, power of nonlinearity s = 0.75. The last term of the
metric function will be very small for r > 0 and, therefore, can be ignored. This leads to

f(r) = 4r −m
√
r. (3)
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This confirms that the event horizon exists at r0 = m2

16 . Therefore, the metric function in
terms of the event horizon is given by

f(r) ' m
√
r0

(r −
√
rr0). (4)

Thus, the black hole solution becomes

ds2 = − m
√
r0

(r −
√
rr0)dt2 + (

m
√
r0

(r −
√
rr0)−1dr2 + r2dφ2. (5)

At r0, there is a coordinate singularity. So, to study across-horizon physics, we need to
change the coordinate system so that the metric is well behaved at the horizon. For this,
we use Painleve coordinate

ts = t− S(r), (6)

where S(r) refers to an arbitrary function of r. This gives

dt = dts + S′(r)dr, (7)

dt2 = dt2s + S′2(r)dr2 + 2S′(r)drdts. (8)

Therefore, the solution in Painleve coordinates is expressed as

ds2 = −adt2s + 2
√

1− adrdts + dr2 + r2dφ2, (9)

where a = m√
r0

(r −√rr0).

The radial null geodesic is given by

−adt2s + 2
√

1− adrdts + dr2 = 0, (10)

−a+ 2
√

1− a
(
dr

dts

)
+

(
dr

dts

)2

= 0. (11)

This gives
ṙ = ±1−

√
1− a. (12)

Now, we consider pair production just inside the horizon at rin ' r0. Let ω be the energy of
the created particles. So, when a particle is emitted from the black hole its mass decreases

m − ω and, hence, the horizon contracts to rout = (m−ω)2
16 from rin = m2

16 . The difference
between rout and rin acts as a barrier for the particle tunnelling. In this region, ω is less
than the potential, so action is imaginary. Therefore, the imaginary part of the action given
as

Im S = Im
∫ rout

rin
prdr, (13)

Im S = Im
∫ rout

rin

∫ pr
0
dp′rdr. (14)

Hamilton’s equation relates the momentum and Hamiltonian as dpr = dH
ṙ . Therefore,

Im S = Im

∫ rout

rin

∫ m−ω

m

dH

ṙ
dr, (15)

= Im

∫ rout

rin

∫ ω

0

−dω
1−
√

1− a
dr,

= Im

∫ rout

rin

∫ ω

0

−dω
1−

√
1− m√

r0
(r −√rr0)

dr.
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This implies that

Im S = Im

∫ rout

rin

∫ ω

0

−dω
1−

√
1− 4r + (m− ω)

√
r
dr. (16)

By defining u = 1− 4r + (m− ω)
√
r, we have

du = −dω
√
r. (17)

Therefore, relation (16) becomes

Im S = Im

∫ rout

rin

∫ u(ω)

u(0)

du

(1−
√
u)
√
r
dr. (18)

This equation has a simple pole at u = 1. So residue at u = 1 is

lim
u→1

(1−
√
u)

1

1−
√
u

= 1. (19)

Therefore, integral over u gives 2πi. Now (18) becomes

Im S = Im

∫ rout

rin

2π
dr√
r
, (20)

= 4π(
√
rout −

√
rin). (21)

The transmission probability is given by

Γ(ω) ' e2Im S = e8π(
√
rout−

√
rin) (22)

To see the Boltzmann factor, we need to calculate (
√
rout −

√
rin) which reads

√
rout −

√
rin =

m− ω
4
− ω

4
= −ω

4
. (23)

Consequently, the transmission probability becomes

Γ(ω) ' e−2πω. (24)

The term in the exponential is identified to Boltzmann factor exp[− ω
TH

]. Therefore, the
Hawking temperature identified to

TH =
1

2π
. (25)

3 Black hole chemistry under thermal fluctuation

In this section, we calculate the thermal properties of the diltonic BTZ black hole under
thermal fluctuation. To describe these, we calculate the temperature, entropy, pressure,
mass and volume respectively

TH =
f ′(r0)

2π
=

m

2π
√
r0

=
1

2π
, (26)

S0 =
1

2
πr0, (27)

P =
1

8πl2
, (28)

M =
√
r0 = 4l

√
PS0, (29)

V =
∂M

∂P

∣∣∣∣
(S0)

= 16l3π

√
πr0
2
. (30)
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Here, we are interested in studying black hole chemistry under the influence of thermal
fluctuation. Under the effect of thermal fluctuation, entropy gets the following correction:

S = S0 −
α

2
lnS0T

2
H , (31)

where α is a correction parameter which measures the strength of fluctuation [25] and has
two possibilities either 0 or 1. The vanishing value of the correction parameter describes the
equilibrium state. The Gibbs free energy for the α = 0 is given by,

G = M − THS0, (32)

= 4l
√
PS − m

4

√
r0, (33)

= (1− m

4
)
√
r0, (34)

=
(

1− m

4

) m
4
. (35)

Moreover, Gibbs free energy in the presence of thermal fluctuation is given by

G =
(

1− m

4

) m
4

+
α

4π
ln

m2

128π
. (36)

To study the behaviour of Gibbs free energy we plot the Fig. 1. Here, we find that the
thermal fluctuation decreases the value of it, and it is important for the small m. However,
for the large m, the effects of thermal fluctuation are not significant.

Figure 1: Gibbs free energy in terms of m for α = 0 (green dash) and α = 1 (red solid).

The Helmholtz free energy can be calculated from the standard relation

F = M − PV − THS. (37)
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This gives

F = m

(
1

4
− m

64
− l
√

2π

4

)
− α

4π
[7 ln 2 + lnπ − 2 lnm] . (38)

The behaviour of Helmholtz free energy is depicted in the Fig. 2. Here, we can see that
Helmholtz free energy decreases with thermal fluctuation. In the presence of correction due
to fluctuation, we can see an extremum for the Helmholtz free energy.

Figure 2: Helmholtz free energy in terms of m for α = 0 (green dash) and α = 1 (red solid).

We can also check conditions to satisfy the first law of thermodynamics

dM = TdS. (39)

Here, we find that the first law holds only if

m =
4(π +

√
π(1 + α))

π
. (40)

It is indeed corresponding to the maximum in the Fig. 1. This means that the black hole
chemistry of the considered system suggests that the give black hole does not satisfy the
first law of thermodynamics for all masses rather this holds for a particular mass for which
Gibbs free energy is maximum. This is an interesting result.

4 Conclusion

In this paper, we have considered a particular solution of dilatonic BTZ black hole and
studied the derived transmission probability of tunnelling through the barrier of the event
horizon. Furthermore, we have studied the black hole chemistry of the given solution under
the influence of small statistical thermal fluctuation. The thermal fluctuation modified
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the equilibrium entropy of the system. Here, we have found that Gibbs free energy and
Helmholtz free energy of the system decrease under the influence of thermal fluctuation.
However, the effect of thermal fluctuation is more significant for the smaller dilatonic BTZ
black holes. We have also obtained a condition for mass for which the given black hole
satisfies the first law of thermodynamics.
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