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Abstract. In the Lorentzian classicalized holographic tensor network (cHTN), we
derive its relativistic on-shell equation from its Lorentzian action in the presence of a
relativistic massive particle in the bulk spacetime: −σ~θ = Mc2. Here, σ is the von
Neumann entropy of the cHTN per site in nats, θ is the real-proper-time expansion of
the cHTN defined along the world line of the particle, and M is the non-zero mass of
the particle. We explain the physical properties, interpretation, and consequences of
this equation. Specifically, from this equation we derive the properties of the on-shell
proper acceleration of another massive particle in the bulk spacetime as those of the
gravitational acceleration induced by the original massive particle.
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The known example of the holographic principle [1, 2, 3] is the d+ 2-dimensional anti-de
Sitter spacetime/d+1-dimensional conformal field theory (AdSd+2/CFTd+1) correspondence
[4, 5, 6, 7, 8]. In the AdS3/CFT2 correspondence, the holographic tensor network (HTN)
was initially proposed by Swingle in Ref. [9] as the multi-scale entanglement renormalization
ansatz (MERA) [10, 11] of the ground state of the strongly coupled boundary CFT2 and
corroborates the Ryu–Takayanagi formula for the holographic entanglement entropy defined
for this boundary quantum state [12, 13, 14, 15, 16].

Based on this HTN proposal [9, 17, 18, 19, 20], we classicalize the HTN (i.e., the MERA)
of the boundary CFT2 from a quantum pure state to its completely mixed quantum state
by restricting the set of observables for the qubit Hilbert space, H, of the boundary CFT2

to an Abelian subset, A, as in Refs. [21, 22, 23]. This restriction of the set of observables is
done by introducing a superselection rule operator, that is, the Pauli third matrix, which is
diagonal in the qubit eigenbasis. Here, the elements of A are defined by the commutativity
with the superselection rule operator, and thus the quantum interferences of the HTN in
the qubit eigenbasis are completely lost.

Note that here we use the term classicalization in the sense of the quantum-to-classical
transition in quantum decoherence theory [24]. The state obtained from a coherent quantum
pure state by classicalization is a mixed quantum state and belongs not to classical mechanics
but to quantum mechanics. Due to the complete loss of the quantum coherence in the qubit
eigenbasis, the von Neumann entropy of the classicalized state, whose density matrix is
diagonal in the qubit eigenbasis, is the Shannon entropy and measures the information lost
by classicalization [21].

In our formulation of the classicalized HTN (cHTN) in Ref. [23], we fixed the geometry
of the bulk spacetime, in which a massive particle is present, to the cHTN of the ground
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state as the background discrete hyperbolic geometry [25] and treated this particle in its
non-relativistic, Euclidean regime. Then, we obtained the bulk quantum mechanical path
integral of the particle in the Lorentzian regime from the bulk classical stochastic process of
the particle in the Euclidean regime by the inverse Wick rotation [23, 26].

In Ref. [22], the action of the cHTN in the classicalized ground state |ψ〉 = (|ψ〉,A) is
given by

I[|ψ〉] = −~H[|ψ〉] , (1)

where H denotes the Shannon entropy in nats. This action is based on the holographic
principle, which equates the boundary information and the bulk degrees of freedom [1, 2, 3],
and consists of the bulk degrees of freedom (i.e., the boundary information) lost by the
classicalization of the ground state of the boundary CFT2. Each bulk degree of freedom has
the spin-half action ~ [22].

To incorporate time dependence in the formulation of the cHTN in the Lorentzian regime,
in Ref. [27], we classicalized real time, too, and considered the special relativistic real-time
mixed state (i.e., time ensemble) of a generic quantum pure state |ψ(t)〉 of the boundary
CFT2 in the representation of the Lorentzian boundary conformal symmetry,

|ψ〉〉LL〈〈ψ| =
∫
T
|ψ(t)〉〈ψ(t)|dµ(t) , (2)

for an absolutely continuous temporal measure dµ(t) of the density matrix |ψ〉〉LL〈〈ψ| and
the boundary total temporal domain T where |ψ(t)〉 is defined [27, 28].1 This measure dµ(t)
of the time ensemble satisfies the normalization condition on the trace of the density matrix∫

T
dµ(t) = 1 . (3)

Here, a definite form of the time ensemble appears in quantum statistical mechanics as the
quantum mixed state

lim
T→∞

1

2T

∫ T

t=−T
|ψ(t)〉〈ψ(t)|dt (4)

of the state vectors |ψ(t)〉 under the unitary time evolution of |ψ(t)〉, in the Hilbert space,
governed by a Hamiltonian. This time ensemble was introduced by von Neumann in Ref.
[29] to define the long-time average of observables Ô by

〈Ô〉 ≡ lim
T→∞

1

2T

∫ T

t=−T
〈ψ(t)|Ô|ψ(t)〉dt (5)

in his proof of the quantum ergodicity of an isolated quantum system described by the state
vector |ψ(t)〉. In this time ensemble, dt/2T constitutes the temporal realization probability
of a state vector |ψ(t)〉 in the Hilbert space.

In Ref. [27], the Lorentzian action of the cHTN is given by

IL[|ψ〉〉L] = −~H[|ψ〉〉L] (6)

for the classicalized mixed state |ψ〉〉L = (|ψ〉〉L,A). In terms of the time ensemble, it
incorporates the time dependence of |ψ〉〉L in the action (1). To illustrate the meaning of
the Shannon entropy in this action, let us consider the discrete time ensemble

|ψ〉〉LL〈〈ψ| =
∑
k

pk|ψk〉〈ψk| (7)

1To take the square root of the density matrix (2), we need an auxiliary temporal sector [27]. In particular,
if |ψ〉〉L is the ground state, |ψ〉〉LL〈〈ψ| = |ψ〉〈ψ| ⊗ 1̂ holds for 1̂ = |T 〉〈T | [27].
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for the temporal realization probabilities pk of cHTN mixed states |ψk〉 = (|ψk〉,A), which
have support on orthogonal subspaces of H. Here, each probability pk is defined by

pk ≡
∫
Tk
dµ(t) (8)

for the boundary total temporal domain Tk occupied by the cHTN mixed state |ψk〉 such
that the normalization condition on the trace of the density matrix (7), that is,

T =
∐
k

Tk , (9)

holds for the disjoint union with respect to Tk. Now, the Shannon entropy of |ψ〉〉L is [30]

H[|ψ〉〉L] =
∑
k

pk(− ln pk + Sv.N.[|ψk〉]) (10)

for the von Neumann entropy in nats (Sv.N.). In Eq. (10), the first and second terms are
the entropy of the time ensemble and the temporal average of the entropy of the cHTN,
respectively.

Here, we make a remark on the time ensemble.

(A) In the Euclidean regime, we regard −~ ln pk (here, − ln pk is information) as the in-
formational Euclidean action of the boundary temporal domain Tk: ergodicity of the
cHTN is adopted as a principle. Then, from the entropic Euclidean action of the cHTN
[27], we obtain the bulk imaginary-time path integral of the discrete geometry of |ψk〉
in the off-shell treatment of |ψk〉.

When the boundary total temporal domain T is an infinitesimal time interval that con-
tains t = 0 (corresponding to the label k = 0), p0 = 1 holds in Eq. (10): the time ensemble
|ψ〉〉L is a pure time-ensemble. In this case of |ψ〉〉L, the maximum entropy with respect to
|ψ0〉 is

Hmax[|ψ0〉] = σATN,0 (11)

for the von Neumann entropy of the cHTN per site (i.e., per disentangler) σ in nats and the
number of sites ATN,0 defined for the cHTN mixed state |ψ0〉 [22]. Here, |ψ0〉 has discrete
hyperbolic geometry [25], and σ is the von Neumann entropy of a classicalized Bell state in
nats and is ln 2 [22] in the exact strong-coupling limit of the boundary CFT2.

From here, we assume a relativistic particle with a non-zero mass M in the bulk space-
time. In this setup, the Lorentzian action is given by

IL[|ψ〉〉L, γt] = −~H[|ψ〉〉L] + SL[γt] , (12)

where SL is the relativistic action of the real-time world line γt of the particle M and is
given by [31]

SL[γt] = −Mc2
∫
γt

dτγt (13)

for the bulk real proper time τ . In the discrete hyperbolic geometry of the cHTN, the bulk
real proper time τ is obtained from the SO(2, 2) isometry of the Lorentzian bulk spacetime
in the absence of the length scale variable of the cHTN [27]. Note that −SL/~ represents
entropy because H on equal footing is entropy: see Eq. (23).

We decompose the boundary total time interval to be considered into the disjoint union
of infinitesimal time intervals. Then, the on-shell equation of the cHTN in the presence of a
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non-zero mass M is obtained from the variation of the action with respect to the bulk real
proper time τ at the site of the mass:

−~ 1

d2A
dτd

2Hmax + dτSL = 0 , (14)

where the action is temporally globally minimized at −~Hmax (i.e., the entropy is temporally
globally maximized at Hmax). In Eq. (14), the cHTN part is per site and its action is mini-
mized at −~Hmax in each infinitesimal time interval. d2A is the infinitesimal dimensionless
area of the cHTN around the site of the mass. From Eqs. (11) and (13), we obtain

dτd
2Hmax = σθd2Adτ , (15)

dτSL = −Mc2dτ , (16)

respectively. Here,

θ =
1

d2A

d

dτ
d2A (17)

is the real-proper-time expansion of d2A.
Substituting Eqs. (15) and (16) into Eq. (14), we obtain our main result:

−σ~θ = Mc2 . (18)

Note that Eq. (18) is the relativistic on-shell equation of the cHTN in the Lorentzian regime,
and the discrete hyperbolic geometry of the cHTN incorporates the negative fundamental
cosmological constant of AdS3 spacetime in general relativity.

In Eq. (18), σ and Mc2 represent entropy production and energy present at the site of
the mass M , respectively. So, the energy quantum −~θ can be interpreted as the thermal
energy of the cHTN

−~θ = kBT (19)

at a finite temperature

T =
Mc2

σkB
(20)

in the presence of a non-zero mass M in the bulk spacetime.
Here, we make an observation: the combination

θdτ =
1

d2A
dτd

2A (21)

is scale-invariant. Thus, by rescaling the discrete length, this combination can be defined
at the top tensor [11] of the cHTN. Then, the inverse renormalization group (RG) direction
is defined from the top tensor of the cHTN. For this direction, the combination (21) means
temporal relabeling of the inverse RG steps such as

θdτ = (ln 2)dτn (22)

for the inverse RG step, n, counted from the top tensor. Note that Eq. (22) is always
negative.

In the interpretation (19), we equally divide the entropy

−dτSL
~

= σ
kBTdτ

~
(23)
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at the top tensor into entropies σkBT
U
n dτn/~ for the Unruh temperature TUn and the bulk

real proper time τn at the inverse RG step n as

kBT
U
n dτn =

kBTdτ

Nn
(24)

for the number of sites Nn at the inverse RG step n. For TUn , we define the Lorentzian
on-shell proper acceleration, of magnitude aL,n, of another non-zero mass at the inverse RG
step n by the Unruh effect [16, 32, 33, 34, 35, 36]:

TUn =
~aL,n
2πckB

. (25)

Equating the relations (19), (22), (24), and (25), aL,n is proportional to the proper-time
derivative dn/dτn and the inverse length factor 1/Nn at step n.

The following three properties of aL follow from Eq. (18):

(i) θdτ is scale-invariant. The unity spatial codimension of the inverse RG steps indi-
cates the “inverse-square law” of aL in three spacetime dimensions, including the bulk
redshift effect.

(ii) θdτ is proportional to the mass M . From this fact, aL is also proportional to M .

(iii) The left-hand side of Eq. (18) has a negative sign. Since the inverse RG step n always
has a negative proper-time derivative, the universal attractivity of aL follows.

Next, we add four remarks.

(B) In Eq. (18), the action of the mass M on the cHTN is scale-invariant: d2A temporally
contracts in a self-similar way with the characteristic proper time σ~/Mc2.

(C) aL,n is the inverse proper-time length scale per site [16, 36] at the inverse RG step n.
As derived above, aL,n is proportional to both dn/dτn and 1/Nn.

(D) We set the cut-off proper length of the cHTN as Λ. Then, the number of redefined
sites Nn at a fixed step n counted from the top tensor by Λ is independent of the
choice of Λ.

(E) The MERA describes a real-time evolution and has a causal light-cone structure
[10, 11]. Thus, the MERA cannot be regarded as a Euclidean time slice of the AdS3

spacetime [16]. However, after classicalization, the MERA recovers the discrete hyper-
bolic spatial metric [25].

Finally, we consider the flat-spacetime limit of the cHTN [37, 38]. In this limit, the
inverse RG step from a non-zero mass M to null infinity is infinitely divided in a finite
(contracted) AdS scale [38], and these divisions are spatially concentric circles due to the
SO(2) isometry. Then, the Lorentzian on-shell acceleration aL of another non-zero mass
separated from the mass M is determined in the form of the three-dimensional gravitational
acceleration, except for the indefiniteness of the cut-off proper length, by the above three
properties (i), (ii), and (iii) of aL.
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