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Abstract. We study hairy black holes in Einstein-Maxwell-complex scalar theory in
four-dimensional asymptotically global anti-de Sitter (AdS) spacetime when the Robin
boundary conditions are imposed on the scalar field. The hairy solutions branch from
the Reissner-Nordström-AdS (RNAdS) black holes at the onset of instability of the
scalar field under the Robin boundary conditions. There are also associated horizonless
solutions called boson stars. Comparing thermal AdS, RNAdS, charged boson stars,
and hairy black holes, we obtain phase diagrams in the grand canonical ensemble.
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1 Introduction

The Einstein-Maxwell-complex(charged) scalar system in asymptotically anti-de Sitter (AdS)
spacetime is known to show the spontaneous breaking of the U(1) gauge symmetry, discussed
as the appearance of the superfluid/superconducting phase [1, 2]. This is often considered
with the so-called Dirichlet boundary conditions on the scalar field at the AdS boundary.
However, when the field has a mass close to the Breitenlohner-Freedman bound [3, 4], general
conditions known as the Robin boundary conditions (also called mixed boundary conditions)
can be imposed. It is also known that the Robin boundary conditions can also make the
AdS spacetime unstable [5]. There is hence interplay of instabilities whose origins are differ-
ent. In [6], linear perturbations of the four-dimensional Reissner-Nordström AdS (RNAdS)
spacetime with global AdS asymptotics were studied for the scalar field with Robin bound-
ary conditions, and instability was discussed. In this talk, we discuss hairy black holes that
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branch from the RNAdS by taking into account the backreaction of the instability [7]. In
global AdS asymptotics, related horizonless hairy solutions called boson stars can be also
obtained. By comparing horizonless and black hole solutions, we find rich phase structure
of solutions with nontrivial scalar field under the Robin boundary conditions.

2 Instability of the RNAdS black hole

We consider Einstein-Maxwell-complex scalar theory in four-dimensional asymptotically
global AdS spacetime. The action is

S =
1

8πGN

∫
d4x
√
−g
(

1

2
(R− 2Λ)− 1

4
FµνF

µν − |Dφ|2 −m2|φ|2
)
, (1)

where Fµν = ∂µAν−∂νAµ and Dµφ = ∂µφ− iqAµφ. The gauge coupling constant is written
by q. We set Λ = −3 and m2 = −2 (The AdS radius is unity). We study spherically
symmetric static solutions in the spherical R× S2 AdS boundary. The ansatz is given by

ds2 = −
(
1 + r2

)
f(r)e−χ(r)dt2 +

dr2

(1 + r2) f(r)
+ r2dΩ2

2, (2)

A = At(r)dt, φ = φ(r). (3)

When f(r) = 1, χ(r) = 0 (and A = φ = 0), we obtain the empty AdS called thermal AdS.
This system also allows the RNAdS black hole solution given by

(
1 + r2

)
f(r) = 1 + r2 −

(
1 + r2h +

Q2

2r2h

)
rh
r

+
Q2

2r2
,

At(r) = µ− Q

r
, χ(r) = φ(r) = 0,

(4)

where rh denotes the location of the outermost horizon, satisfying f(rh) = 0, and µ and Q
are the U(1) chemical potential and charge density. We use a gauge in which At(rh) = 0. If
µ2 < 2, the first order transition known as the Hawking-Page transition occurs between the
RNAdS and thermal AdS in the grand canonical ensemble when [8, 9, 10]

THP =

√
2− µ2

√
2π

. (5)

If µ2 > 2, the RNAdS black hole becomes extremal (the temperature becomes zero) when

µ =
√

2(1 + 3r2h) ≡ µext. (6)

We wish to see when φ can be nonzero. To search the onset of instability of φ, it is
sufficient to assume a static perturbation. The static perturbation equation is given by

φ′′(z) +

(
F ′

F
− 2

z

)
φ′(z)−

(
m2

z2F
− q2A2

t

F 2

)
φ(z) = 0, (7)

where m2 = −2 and we use a new coordinate z ≡ 1/r and F (z) ≡ (1 + z2)f(z). The
asymptotic behavior of φ in z → 0 takes the form

φ = φ1z + φ2z
2 + · · · , (8)
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Figure 1: (a) Top: The charged scalar field normal modes of global AdS with constant
At = µ; rh = 0. (b) Bottom: The onset of instability of the RNAdS for rh = 0.1, 0.5, 1 at
q = 1.

where both of φ1 and φ2 can be nonzero as normalizable normal modes. For solving Eq.(7),
we impose Robin boundary conditions at the AdS boundary z = 0. The Robin boundary
conditions can be specified by a parameter ζ defined by

cot ζ =
φ2
φ1
, (9)

where we choose the domain of ζ as 0 ≤ ζ < π. The points ζ = 0 and ζ = π/2 correspond
to the Dirichlet and Neumann boundary conditions, respectively.

Under the Robin boundary conditions, we search the onset of instability for the scalar
field perturbation in the four-dimensional parameter space (ζ, rh, µ, q). In figure 1, we show
(a) the location of the AdS charged scalar field normal modes (i.e. for rh = 0) and (b) the
onset of instability of the RNAdS for rh = 0.1, 0.5, 1 at q = 1. In figure 1 (b), the value of µ
is bounded from above by extremality as µ ≤ µext given in Eq.(6), which is marked by the
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vertical red dashed line for each rh. In this figure, the RNAdS is unstable to the charged
scalar field perturbation above each curve, which can be found by studying full quasinormal
modes by including nonzero frequencies as e−iωt (see also [6]). Correspondingly, also in
figure 1 (a), nonzero scalar field solutions will exist in the region upper from the curve. In
the following, we wish to discuss backreacted solutions in these regions.

3 Hairy black holes

Knowing the onset of instability for the charged scalar field perturbation of the RNAdS, we
will construct backreacted hairy black hole solutions branching at the onset of instability.
With the ansatz Eq.(2), the equations of motion are given by coupled ODEs for f(z) =
F (z)/(1 + z2), χ(z), φ(z), At(z) as

F ′ −
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3

z
+ zφ′2

)
F − eχ

(
z3A′2t

2
+
zq2A2

tφ
2
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)
+ z +
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χ′ − 2zφ′2 − 2zeχq2A2
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F ′

F
− χ′

2
− 2
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)
+
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2

z2F
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t

z2F

)
φ = 0, (12)

A′′t +
χ′

2
A′t −

2q2φ2

z2F
At = 0. (13)

In the AdS boundary z = 0, these equations can be solved asymptotically by

f(z) = 1 + φ21z
2 + f3z

3 + · · · , (14)

χ(z) = χ0 + φ21z
2 + · · · , (15)

φ(z) = φ1z + φ2z
2 + · · · , (16)

At(z) = a0 + a1z + · · · , (17)

where (f3, χ0, φ1, φ2, a0, a1) are six integration coefficients that are not determined in the
asymptotic analysis. Among these, we can set χ0 = 0 by a scaling symmetry so that the
behavior of the metric Eq.(2) in z → 0 becomes

ds2|z→0 =
1

z2
(
−dt2 + dz2 + dΩ2

2

)
. (18)

In the bulk, we impose the presence of the black hole horizon at z = 1/rh, or regularity at
the center of AdS (z = ∞) if we consider horizonless solutions that can be obtained in the
same ansatz.

The asymptotic coefficients in Eqs.(14)–(17) are related to thermodynamic quantities.
Carrying out the holographic renormalization, we obtain the expressions of the thermody-
namic quantities in terms of the asymptotic coefficients. For the Robin boundary conditions,
the scalar field is dual to the dimension 1 operator O1. The expression of the total energy,
charge, and scalar expectation value for the Robin boundary conditions is

E = 4π(−f3 + 3φ21 cot ζ) = 4π(−f3 + 3φ1φ2),

Q = −4πa1, 〈O1〉 = 4π
√

2φ1.
(19)

The chemical potential conjugate to Q is given by µ = a0. We also have the Hawking
temperature TH and entropy SBH ≡ 8π2r2h. The first law of thermodynamics/black hole
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Figure 2: The phase diagram for neutral solutions.

mechanics for these thermodynamic quantities are given by

dE = THdSBH + µdQ+
1

8π
〈O1〉2d(cot ζ), (20)

where we also included the variation of the parameter of the Robin boundary condition ζ.
The grand potential for the grand canonical ensemble is given by

Ω = E − THSBH − µQ. (21)

4 Results

4.1 Neutral boson stars and black holes

When the gauge field is absent, the phase structure is specified by two parameters (TH, ζ).
In this case, the free energy we compare is the grand potential Eq.(21) at µ = 0, Ω|µ=0 =
(E − THSBH)µ=0. We compare the free energies among thermal AdS, Schwarzschild AdS,
horizonless geometry with nonzero neutral scalar, which we call Robin boson stars, and black
holes with neutral scalar hair, which we call Robin black holes.

The neutral phase diagram is shown in figure 2. The blue line at the border of the
Schwarzschild AdS and hairy Robin black holes is the second order phase transition for
growing scalar hair, and it extends in

ζ ≥ ζt ' 0.6847π. (22)

As ζ increases, the critical temperature for this scalar hair formation rises, and in the limit
ζ → π (cot ζ → −∞), the Robin black holes dominate at any high temperatures. The
vertical green line is the second order phase transition from thermal AdS to Robin boson
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stars, and it is located at

ζ = ζc = π − tan−1(π/2) ' 0.6805π. (23)

The red line in ζ ≥ ζt marks the first order Hawking-Page transition between Robin black
holes and Robin boson stars. The short orange segment in ζc ≤ ζ ≤ ζt (see the inset) is the
first order phase transition between Schwarzschild AdS and Robin boson stars; for ζ in this
region, Robin black holes have the higher free energy than these two, and hence the first
order phase transition is between the Schwarzschild AdS and Robin boson stars. The red,
orange, and blue lines merge at ζ = ζt, where

TH ' 0.3184. (24)

This is slightly higher than the transition temperature THP for the Schwarzschild AdS and
thermal AdS Eq.(5), THP|µ=0 = 1/π ' 0.3183. Also in ζ > ζt, the Hawking-Page transition
temperature depends on ζ very mildly. We were not able to pin down the line of the
Hawking-Page transition up to ζ → π because of numerical limitations. But, as long as we
could confirm, the transition temperature (red line) behaves as

TH ' 0.03(ζ − ζt)/π + 0.3184. (25)

4.2 Charged boson stars and black holes

In the presence of the gauge field, we consider black holes with nontrivial charged scalar field
with the Robin boundary conditions. We call these hairy Robin black holes. The associated
charged but horizonless solutions with the Robin boundary conditions will be called charged
Robin boson stars. The phase space depends on the all four parameters (µ, TH, ζ, q). The
grand potential of charged Robin boson stars always satisfies Ω < 0, while thermal AdS has
Ω = 0. Therefore, the charged Robin boson stars are always preferred over the thermal AdS
when the two solutions overlap.

In figure 3, phase diagrams are shown for q = 1 and different ζ. In each figure, the blue
line on the border between the RNAdS and hairy Robin black holes denotes the second-
order phase transition below which the scalar hair forms. The vertical green line is for the
second-order phase transition between thermal AdS and charged Robin boson stars. The red
line is the first order Hawking-Page transition between hairy Robin black holes and charged
Robin boson stars. The orange segment denotes the first order phase transition between the
RNAdS and charged Robin boson stars. The black dashed line is plotted for reference of
the Hawking-Page transition between the thermal AdS and RNAdS Eq.(5), although it is
not physically dominant because it is superseded by the charged Robin boson star phase.

Starting from a large value of ζ, we list notable features in the phase structure by
decreasing ζ.

• ζ > ζt ' 0.6847π: In figure 3 (a), neutral solutions (µ = 0) can have nontrivial scalar
hair in this region of ζ. Thermal AdS does not appear in any µ because its free energy is
always higher than neutral Robin boson stars when these geometries overlap. Hence,
the phase diagram consists of three phases: RNAdS, hairy Robin black holes, and
charged Robin boson stars. By decreasing the temperature, the RNAdS spontaneously
grows the scalar hair, and then there is the first order transition between the black
holes and boson stars. This feature is common to all µ.

• ζt > ζ > ζc ' 0.6805π: In figure 3 (b), the phase structure for this parameter region
is shown for ζ/π = 0.682. When ζ = ζt, the two phase transition lines (blue and red)
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first meet at µ = 0. In ζ < ζt, the phase transition from the RNAdS to charged Robin
boson stars (orange line) appears, where the hairy Robin black holes have the higher
grand potential than the other two.

• ζc > ζ & 0.24π: The phase diagram in this parameter region is shown in figure 3 (c).
In ζ < ζc, the thermal AdS phase can be present as µ is increased from 0 until the
charged Robin boson stars branch from thermal AdS (vertical green line).

• In figures 3 (a)–3 (c), the Hawking-Page transition (red line) will approach TH → 0 as
µ is increased. We were not able to compute up to this limit due to tough numerics, but
we can see that the transition line will go down towards TH → 0 for a wide parameter
range.

• ζ ' 0.24π: When ζ is decreased further, the Hawking-Page transition between hairy
Robin black holes and charged Robin boson stars reaches zero temperature and dis-
appears. Figure 3 (d) is the phase diagram for ζ/π = 0.239. This has four phases,
but the charged Robin boson stars and hairy Robin black holes are separated by the
RNAdS, and correspondingly there is a small gap of µ at zero temperature where the
extremal RNAdS survives in the phase diagram, and the charged hairy Robin black
holes branch from the extremal RNAdS.

• ζ . 0.24π: The charged Robin boson star phase disappears when ζ is decreased further.
In figure 3 (e), the phase diagram is shown at ζ/π = 0.2. While the charged Robin
boson stars can be also obtained as solutions, their grand potential is always bigger
than that of RNAdS and hairy Robin black holes, and hence they do not show up in
the grand canonical phase diagram.

When the coupling q is increased, the ζ dependence of the phase structure is affected.
For q ≥

√
2, the phase structures of figures 3 (d) and 3 (e) are absent. No extremal RNAdS

is stable against scalar hair formation even for the Dirichlet boundary condition ζ = 0. For
q =
√

2 and ζ = 0, a phase structure not shown here appears (see figure 7(a) in [11]). For
q >
√

2 and any ζ, the scalar hair grows at finite temperatures before extremality is reached.

5 Conclusion

We considered charged boson stars and black holes in four-dimensional Einstein-Maxwell-
complex scalar theory in asymptotically global AdS spacetime when the Robin boundary
conditions are imposed on the charged scalar field. This setup has the four-dimensional
parameter space (TH, µ, q, ζ), and allowing the Robin boundary conditions offers the most
general static spherical solutions in the four-dimensional Einstein-Maxwell-complex scalar
theory. The phase structure and phase transition are studied in the grand canonical en-
semble. There are four phases characterized by the presence and absence of the black hole
horizon and nontrivial scalar hair. There is an interplay between two kinds of instability on
the formation of a charged scalar hair, the one caused by the Robin boundary conditions
and the other by the U(1) charge of the black hole geometry. These introduce the richer
phase structure, compared with the case of the Dirichlet boundary condition.
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Figure 3: Phase diagram for q = 1 and ζ/π = 0.7, 0.682, 0.6, 0.239, 0.2. (a) Top left: ζ/π =
0.7; (b) Top right: ζ/π = 0.682; (c) Middle left: ζ/π = 0.6; (d) Middle right: ζ/π = 0.239;
(e) Bottom: ζ/π = 0.2.


