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Abstract. The perturbation method is an approximation scheme with a solvable
leading order. The standard way is to choose a non-interacting sector for the leading
order. The adaptive perturbation method improves the solvable part by using all
diagonal elements for a Fock state. We consider the harmonic oscillator with the
interacting term, λ1x

4/6 + λ2x
6/120, where λ1 and λ2 are coupling constants, and x

is the position operator. The spectrum shows a quantitative result from the second-
order, less than 1 percent error, compared to a numerical solution when turning off the
λ2. When we turn on the λ2, more deviation occurs, but the error is still less than
2 percent. We show a quantitative result beyond a weak-coupling region. Our study
should provide interest in the holographic principle and strongly coupled boundary
theory.

Keywords: Fock State; Harmonic Oscillator; QFT; Hamiltonian; Strongly Coupled
Physics.

1 Introduction

It is hard to solve quantum systems without requiring high symmetry, like a hydrogen atom
and a harmonic oscillator [1]. Therefore, people used the above solvable systems to generate
a more complicated system by perturbing it. In Quantum Field Theory (QFT), people often
choose a non-interacting theory for solvable systems. The perturbation series cannot explore
any physical significance for a large coupling constant [2]. Hence the perturbation technol-
ogy [3] only probes physics in a weak-coupling region. However, the perturbation series is
not convergent. This series is asymptotic convergence. The Borel summation solved the
problem in some models but needs a complicated resummation. We will adopt the adaptive
perturbation method [4, 5]. The method is simple enough to provide an analytical solution
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to the spectrum. In this letter, our calculation is only up to the second-order. The analyti-
cal solution is enough to show a quantitative comparison to numerical solutions in different
values of coupling constants beyond a weak-coupling perturbation.

The adaptive perturbation method chooses the diagonal elements of a Fock space for the
solvable part [4]. This perturbation includes the interacting information at the leading order
[4]. The unperturbed state is always a Fock state [4]. In the old calculation of QFT, people
used the eigenstate of non-interacting theory. The state is not a Fock state for a loss of
mass term and spatial derivative terms. Another difference is a variable γ. This variable
transforms the position operator by a scaling factor. The commutation relation between the
momentum and position operators does not change [4]. Fixing γ is through a minimized
expectation value of Hamiltonian [4]. The variation method can give a proper estimation for
a ground state. However, the leading-order result shows that the estimation is good enough
for excited states in all tested coupling constants [6, 7]. The variation method should give
a proper saddle point. The perturbation parameter is not a coupling constant when a mass
term loses [7]. This result shows that such a perturbation is still valid for a large coupling
constant. The central question that we would like to address in this letter is: How practical
for the adaptive perturbation method?

We demonstrate an analytical study from the second-order perturbation. If this method is
practical, the solution should be close to the numerical solutions. In the leading order, we fix
the variable by minimizing the expectation value of the Hamiltonian. For the second-order
calculation, the fixing has ambiguities. We can choose the same value for γ as the leading
order or fix the γ by minimizing the eigenenergy with a second-order correction. However,
the exact result should not depend on a choice of γ. The choice of γ should rely on the
convenience of the calculation and how practical. However, the calculation is simple and
practical if one chooses the value of γ as in the leading-order.

In this letter, we consider a harmonic oscillator model with the potential λ1x
4/6+λ2x

6/120.
The λ1 and λ2 are coupling constants, and x is the position operator. We can obtain the
saddle points analytically in such a model. Hence we can provide an analytical solution to the
second-order perturbation. Usually, the perturbation study in a strong-coupling region is
complicated, and it is hard to have an analytical solution. We compare the analytical solution
to the numerical solutions for different values of the coupling constants. The maximum
deviation is around 2%. Because our calculation is only up to the second-order, the adaptive
perturbation method should be practical. The study of strongly coupled field theory loses
a general and practical method. Therefore, the concrete result usually only stays in the
weak-coupling region. It is hard to directly compute the strongly coupled physics (like
in the low-energy duality web and holographic principle). Our practical method should
provide the first-principle study in the strongly-coupled field theory (helpful for studying
the renormalization group flow and strongly coupled boundary theory or the semi-classical
black hole in the context of the AdS/CFT correspondence).

2 Adaptive Perturbation Method

We show a procedure of the adaptive perturbation method from the Hamiltonian

H =
p2

2
+ ω2x

2

2
+ λ1

x4

6
+ λ2

x6

120
. (1)
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The p is the momentum operator, and ω is the frequency. The commutation relation between
the x and p is [p, x] = −i. We rewrite the x and p in terms of the creation operator A†γ and
annihilation operator Aγ [4]:

x =
1√
2γ

(A†γ +Aγ); p = i

√
γ

2
(A†γ −Aγ). (2)

To satisfy the commutation relation between x and p, the creation and annihilation operators
need to satisfy [4]

[Aγ , A
†
γ ] = 1. (3)

The γ is a scaling factor of x, and it does not modify [p, x] = −i. The creation and
annihilation operators depend on the γ. Hence the vacuum state also depends on the γ,
Aγ |0γ〉 = 0 [4]. The number operator is defined similarly as the following [4]:

Nγ |nγ〉 ≡ A†γAγ |nγ〉 = n|nγ〉. (4)

We decompose the Hamiltonian to a solvable and perturbation part [4]. The solvable part
H0(γ) is the diagonal elements for a Fock space [4]. Other terms in the Hamiltonian are
the perturbation part V (γ) [4]. Hence the solvable part H0(γ) in H contains the coupling
constants. When applying to the time-independent perturbation in a single-particle system,
the formula of the eigenenergy is

En = E(0)
n +

∑
k 6=n

|〈k(0)|V |n(0)〉|2

E
(0)
n − E(0)

k,n

+ · · · . (5)

The E0
n is the n-th unperturbed eigenenergy. The |n(0)〉 is the n-th unperturbed eigenstate.

Because V is the non-diagonal elements of the Fock space, the first-order term 〈n(0)|V |n(0)〉
vanishes. We determine the unfixed variable γ by minimizing the expectation value of the

Hamiltonian En(γ)min or E
(0)
n . The E

(0)
k,n is the k-th unperturbed eigenenergy with the n-th

unperturbed eigenstate’s γ. Hence we determine the value of γ by the leading order or the
solvable part and continuously use the same value in the higher-order perturbation terms.
Because each unperturbed state gives a different value of γ, using the same value in the
second-order is strange. However, we will show that the perturbation solution can compare
to the numerical solution in all tested regions.

The unperturbed spectrum is [7]

En(γ)min

=
γ

4
(2n+ 1) +

ω2

4γ
(2n+ 1)

+
λ1
4γ2

(
n2 + n+

1

2

)
+

λ2
4γ3

(
1

12
n3 +

29

240
n2 +

1

6
n+

1

16

)
.

(6)

The expectation value of the Hamiltonian is minimal when the γ is positive and satisfies [7]

γ4 − ω2γ2 − λ1
2n2 + 2n+ 1

2n+ 1
γ − λ2

80

20n3 + 29n2 + 40n+ 15

2n+ 1
= 0.

(7)
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Our direct second-order calculation gives the spectrum

En(γ)2

=
γ

4
(2n+ 1) +

ω2

4γ
(2n+ 1) +

λ1
4γ2

(
n2 + n+

1

2

)
+

λ2
4γ3

(
1

12
n3 +

29

240
n2 +

1

6
n+

1

16

)
+

λ22
921600γ6

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

−3γ − 3ω2

γ −
3λ1

2γ2 (2n+ 7) + λ2

4γ3

(
− 3

2 (n2 + 6n+ 12)− 29
20 (n+ 3)− 1

)

+

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
λ2

320γ3 (2n+ 5) + λ1

24γ2

)2

−2γ − 2ω2

γ −
λ1

γ2 (2n+ 5)− λ2

4γ3

[(
n2 + 4n+ 16

3

)
+ 29

30 (n+ 2) + 2
3

]

+

(n+ 1)(n+ 2)

(
− γ

4 + ω2

4γ + λ1

12γ2 (2n+ 3) + λ2

64γ3 (n2 + 3n+ 3)

)2

−γ − ω2

γ −
λ1

2γ2 (2n+ 3)− λ2

4γ3

[(
1
2n

2 + n+ 2
3

)
+ 29

60 (n+ 1) + 1
3

]

+

(n− 1)n

(
− γ

4 + ω2

4γ + λ1

12γ2 (2n− 1) + λ2

64γ3 (n2 − n+ 1)

)2

γ + ω2

γ + λ1

2γ2 (2n− 1) + λ2

4γ3

[(
1
2n

2 − n+ 2
3

)
+ 29

60 (n− 1) + 1
3

]

+

(n− 3)(n− 2)(n− 1)n

(
λ1

24γ2 + λ2

320γ3 (2n− 3)

)2

2γ + 2ω2

γ + λ1

γ2 (2n− 3) + λ2

4γ3

[(
n2 − 4n+ 16

3

)
+ 29

30 (n− 2) + 2
3

]
+

λ22
921600γ6

(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)n

3γ + 3ω2

γ + 3λ1

2γ2 (2n− 5) + λ2

4γ3

(
3
2 (n2 − 6n+ 12) + 29

20 (n− 3) + 1

) .
(8)

When one chooses:

ω = λ2 = 0, (9)

each perturbation term is at the same order of the coupling constant λ
1/3
1 [7]. This order

matches with an exact result. Because we can do the transformations,

x→ x

λ
1
6
1

; p→ λ
1
6
1 p, (10)

to show H ∝ λ1/31 . The case:

ω = λ1 = 0 (11)

is also similar. Hence the perturbation parameter should not be a coupling constant [7].
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3 Comparison for λ2 = 0

We discretize the kinetic-energy term as

p2

2
ψ → −ψj+1 − 2ψj + ψj−1

2a2
, (12)

where ψj is the eigenfunction at the site xj for the lattice theory, and a is the lattice spacing.
The lattice index is labeled by j = 1, 2, · · · , n, where n is the number of lattice points. The
lattice system has n + 1 lattice points with a lattice size 2L and the periodic boundary
condition as in the following:

−L ≤ xj ≤ L; x0 = −L; xj+1 ≡ xj + a;

ψ0 ≡ ψn; 2L = na. (13)

We do an exact diagonalization to obtain the eigenenergies. The choice of lattice size and
the number of lattice points is:

L = 8; n = 1024. (14)

We first turn off the λ2. Our second-order perturbation solution only deviates from the
numerical solution within 1% in Tables 1, 2, and 3. When we turn off the λ1 and λ2,
the adaptive perturbation method gives an exact solution to the harmonic oscillator with
a non-vanishing mass term [4]. We only use the second-order perturbation to obtain the
accurate result for the interaction x4. Hence the adaptive perturbation should be prac-

tical. We will do a similar test for λ2 6= 0. We then define Deviation 1 as

(
100 ×∣∣((Numerical Solution) − En(γ)min

)/
(Numerical Solution)

∣∣)% and Deviation 2 as(
100×

∣∣((Numerical Solution)− En(γ)2
)/

(Numerical Solution)
∣∣)% in all Tables.

Table 1: The comparison between the perturbation and numerical solutions for the ω = 0,
λ1 = 16, and λ2 = 0.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 0.944 0.929 0.926 1.943% 0.323%

1 3.361 3.324 3.319 1.265% 0.15%

2 6.496 6.53 6.512 0.245% 0.276%

3 10.11 10.211 10.17 0.589% 0.403%

4 14.098 14.266 14.201 0.725% 0.457%

5 18.398 18.636 18.545 0.792% 0.49%

6 22.97 23.281 23.162 0.828% 0.513%

7 27.785 28.172 28.022 0.845% 0.535%
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Table 2: The comparison between the perturbation and numerical solutions for the ω = 0,
λ1 = 0.25, and λ2 = 0.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 0.236 0.232 0.231 2.164% 0.432%

1 0.84 0.831 0.829 1.326% 0.241%

2 1.624 1.632 1.628 0.245% 0.245%

3 2.527 2.552 2.543 0.629% 0.353%

4 3.524 3.566 3.551 0.76% 0.422%

5 4.599 4.659 4.637 0.819% 0.474%

6 5.742 5.82 5.792 0.863% 0.483%

7 6.946 7.043 7.009 0.898% 0.485%

Table 3: The comparison between the perturbation and numerical solutions for the ω = 1,
λ1 = 16, and λ2 = 0.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 1.041 1.029 1.026 1.461% 0.292%

1 3.607 3.576 3.571 1.008% 0.14%
2 6.852 6.878 6.863 0.16% 0.218%

3 10.56 10.646 10.611 0.48% 0.329%

4 14.631 14.78 14.723 0.624% 0.387%

5 19.009 19.224 19.143 0.699% 0.423%

6 23.655 23.938 23.83 0.734% 0.453%

7 28.539 28.895 28.758 0.761% 0.476%

4 Comparison for λ2 6= 0

Now we turn on the interacting term x6. The maximum deviation for the second-order
perturbation becomes 1.742% in Tables 4, 5, and 6. The reason is possibly due to more
transitions of the x6 than the x4. Hence suppressing the deviation to 1% is necessary from
a higher-order calculation. However, the deviation is good enough for a qualitative study.
Introducing a mass term reduces the deviation dramatically in a weak-coupling region by
comparing Table 4 to Table 6. We find that the case λ2 6= 0 is similar to the study of λ2 = 0.
The comparison should show that the adaptive perturbation method is practical because
the second-order is enough for a quantitative result.



Second-Order Perturbation in Adaptive Perturbation Method 43

Table 4: The comparison between the perturbation and numerical solutions for the ω = 0,
λ1 = 16, and λ2 = 256.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 1.117 1.086 1.075 3.906% 1.023%

1 4.047 3.964 3.949 2.481% 0.379%

2 7.993 8.032 7.989 0.05% 0.538%

3 12.724 12.939 12.831 0.833% 0.841%

4 18.109 18.532 18.338 1.248% 1.057%

5 24.067 24.723 24.426 1.469% 1.215%

6 30.54 31.453 31.038 1.604% 1.337%

7 37.486 38.67 38.13 1.688% 1.416%

Table 5: The comparison between the perturbation and numerical solutions for the ω = 0,
λ1 = 0.25 and λ2 = 4.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 0.343 0.331 0.326 5.214% 1.533%

1 1.258 1.225 1.218 3.284% 0.574%

2 2.512 2.524 2.507 0.199% 0.678%

3 4.039 4.123 4.079 0.98% 1.07%

4 5.795 5.963 5.884 1.512% 1.342%

5 7.753 8.015 7.894 1.786% 1.532%

6 9.892 10.256 10.089 1.952% 1.655%

7 12.197 12.671 12.454 2.063% 1.742%

Table 6: The comparison between the perturbation and numerical solutions for the ω = 1,
λ1 = 16, and λ2 = 256.

n En(γ)min En(γ)2
Numerical
Solution

Deviation 1 Deviation 2

0 1.195 1.168 1.159 3.106% 0.776%

1 4.242 4.165 4.154 2.118% 0.264%

2 8.266 8.297 8.26 0.072% 0.447%

3 13.059 13.253 13.157 0.744% 0.729%

4 18.498 18.889 18.712 1.143% 0.945%

5 24.503 25.12 24.844 1.372% 1.11%

6 31.019 31.885 31.496 1.514% 1.235%

7 38.005 39.143 38.625 1.605% 1.341%

5 Outlook

The anharmonic oscillator model is non-integrable. Therefore, the perturbation series to all
orders cannot have an exact solution. However, a quantitative result appears in the second
order. This result should imply that this method is quite efficient. To understand our world,
we must face non-integrable models. Therefore, it is impossible to have an exact solution
always. The adaptive perturbation method [4] can provide an analytical solution to each
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perturbed term for all coupling constants. Especially for a strongly coupled theory, it is hard
to have an analytical study from a traditional method. We demonstrated that the adaptive
perturbation method is simple enough to provide an analytical solution.

Our consideration is extendable to the scalar field theory [4]. It is interesting to study critical
points by using a renormalization group flow [2].
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