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Abstract. Baryon density and magnetic �eld e�ect on chaos for the holographic
dual of a QQ̄ system at �nite temperature is studied. A string in an AdS Reiss-
ner�Nordstrom background, and in a metric with magnetic �eld near the black-hole
horizon is considered and small time-dependent perturbations of the static con�gura-
tions are investigated. The proximity to the horizon induces chaos, which is softened
increasing the chemical potential or the magnetic �eld. A background geometry in-
cluding the e�ect of a dilaton is also examined. The Maldacena, Shenker, and Stanford
bound on the Lyapunov exponents characterizing the perturbations is satis�ed for �nite
baryon chemical potential and magnetic �eld and when the dilaton is included in the
metric.
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1 Introduction

The aim of these studies [1,2] is to analyze the e�ects of baryon density and magnetic �eld on
the chaotic behavior of a suspended string in a gravitational background. The works follow
the tests, carried out using holographic methods, of the Maldacena-Shenker-Stanford (MSS)
bound [3]. The bound, conjectured to be universal, states that, under general conditions,
for a thermal quantum system at temperature T some out-of-time-ordered correlation func-
tions involving Hermitian operators which characterize the system have an exponential time
dependence in determined time intervals. The dependence is characterized by the exponent
λ, for which a bound (in units where ~ = 1 and kB = 1) can be obtained:

λ 6 2πT. (1)

The correlation functions quantify quantum chaos. They are the thermal expectation values
of the squared commutator of two Hermitian operators at a time separation t, that allow to
determine the e�ect of one operator on measurements of the other one at a later time.

The MSS bound should be satis�ed by a set of systems called fast �scramblers�. The
possibility to apply holographic methods to test the bound is supported by the observation
that in nature the black holes (BH) are the fastest scramblers: the time needed for a system
near a BH horizon to loose information depends logarithmically on the number of the system
degrees of freedom [4, 5]. Connections between chaotic quantum systems and gravity have
been investigated in [6�10]. In a holographic framework, a relation has been worked out
between the size of the operators of the quantum theory on the boundary, which are involved
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in the temporal evolution of the perturbation, and the momentum of a particle falling in
the bulk [11,12].

To test the MSS bound (1) through holographic methods, the quantum system is conjec-
tured to be a 4d boundary theory dual to an AdS5 gravity theory with a black hole [13�15].
Several investigations are described in [16�20]. Most of the studies analyze the dynamics of
a string hanging in the bulk with endpoints on the boundary, which is the holographic dual
of a static quark-antiquark pair [21�24]. To quantify the chaotic dynamics of such systems,
the Lyapunov exponent λ, characterizing the chaotic behavior of the �uctuations around
the static string con�guration is evaluated [25�27]. In the work [28] the bound has been
generalized to a quantum system in a thermal ensemble and a global symmetry. In the case
of QCD, the global symmetry can be related to the conservation of the baryon number. The
generalization in [28] relaxes the MSS bound:

λ 6
2πT

1−
∣∣∣ µµc

∣∣∣ , (2)

where µ is the chemical potential related to the global symmetry, and µc a critical value
above which the thermodynamic ensemble is not de�ned. The inequality (2) is conjectured
for µ� µc. This means that systems that satisfy the bound (2) could violate the MSS one.

In this review a general approach to study the chaotic behavior of such systems is pre-
sented. Two applications of the procedure are analyzed. The �rst one aims to test the
generalized bound, considering the role of a U(1) global symmetry connected to the conser-
vation of the baryon number. In such case, a dual metric can be identi�ed with the AdS
Reissner-Nordstrom (RN) metric with a charged black hole. We can use this background
for testing Eq.(2). The second case analyzes the impact of an external magnetic �eld on the
chaotic behavior of the string. The magnetic �eld is relevant in di�erent contexts, including
heavy-ion collisions or condensed matter problems such as the Quantum Hall E�ect and su-
perconductivity at high temperatures. A general gravity dual for such systems is presented
in [29�34]. The backreaction of an external magnetic �eld modi�es the geometry of the 5d
spacetime, the metric of which is determined by the Einstein equations. As a result, an
anisotropy is introduced in the spatial directions. Moreover, in a �nite temperature system
the relation between the position of the black hole horizon, the source of chaos in the 5d
geometry, and temperature, involved in the MSS relation in the boundary theory, is modi�ed
by the magnetic �eld.

2 String pro�le in the gravitational background

We are interested in the gravity dual of a strongly coupled QQ̄ pair in a general thermody-
namic background at �nite temperature. The hanging string is described by the functions
r(t, `) and xi(t, `), in an asymptotically AdS5 geometry with a black hole. The endpoints
of the string are on the AdS boundary r →∞. (t, `) are the worldsheet coordinates, with `
the proper distance measured along the string, Fig. 1.
The line element for a generic 5 dimensional diagonal metric can be expressed as

ds2 = gttdt
2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 + grrdr

2. (3)

The string dynamics is governed by the Nambu-Goto (NG) action:

S = − 1

2πα′

∫
dt d`

√
−h , (4)



Baryon density and magnetic �eld e�ects 57

ℓ

rH

r0

r  ∞ L

2

Figure 1: Pro�le of a static string for the QQ̄ system. r0 is the position of the tip of the string,
rH the position of the horizon, L the distance between the end points on the boundary.

where α′ is the string tension and h the determinant of the induced metric hij = gMN
∂XM

∂ξi
∂XN

∂ξj
,

with ξi,j the worldsheet coordinates and g the metric tensor. In the static case the action
reads:

S = − T

2πα′

∫
d`
√
|gttgiix́2i + gttgrr ŕ2| , (5)

where x́i denotes the derivative with respect to `. xi is a cyclic coordinate, so its conjugate
momentum

∂L
∂x́i

= − T

2πα′
|gtt|giix́i√

|gtt|giix́2i + |gtt|grr ŕ2
(6)

is a constant of motion. Denoting with r(` = 0) = r0 the position of the tip of the string in

the bulk, i.e. the point where dr
dxi

∣∣∣
`=0

= 0, we have:√
|gtt|giix́i√

giix́2i + grr ŕ2
=
√
|gtt|gii

∣∣∣
`=0

. (7)

Moreover, from the condition

d`2 = gii dx
2
i + grr dr

2 (8)

the equations determining the string pro�le can be obtained:

x́ = ±
√
−gtt(r0)gii(r0)√
−gttgii

(9)

ŕ = ±
√
−gttgii + gtt(r0)gii(r0)√

−gttgiigrr
. (10)

We set the string endpoints lying on the AdS5 boundary at xi = ±L/2. The minimum value
r0 of the coordinate r is reached at xi = 0 (or ` = 0). L and r0 are related, since

L = 2

∫ ∞
r0

dr

(
gii(r)

grr(r)

(
gtt(r)gii(r)

gtt(r0)gii(r0)
− 1

))− 1
2

. (11)

Therefore, the static string con�guration depends on r0 or L. Choosing di�erent con�gu-
rations, it is possible to probe the e�ect of the closeness of the BH horizon on the chaotic
behavior of the string. As shown in Ref. [1] the proximity to the horizon enhances the
chaotic behavior, hence we choose an unstable con�guration near the horizon as starting
point to perturb and study the dynamics of the �uctuation.
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3 Perturbing the static solution

The chaotic dynamics can be studied by perturbing the static string con�guration near the
black hole horizon. The perturbation is chosen to be orthogonal in each point of the string,
and described by the coordinate ` in the r− x plane [25,1]. The perturbation is depicted in
Fig. 2. Considering the unit vector nM = (0, nx, 0, 0, nr) orthogonal to tM , we have:

grr(r) (nr)
2

+ gxx(r) (nx)
2

= 1 (12)

ŕ (`) grr (r) nr + x́ (`) gxx (r) nx = 0 . (13)

For an outward perturbation as in Fig. 2 the solution for the components nx and nr is

nx(`) =

√
grr
gxx

ŕ(`) , nr(`) = −
√
gxx
grr

x́(`) . (14)

The time-dependent perturbation ξ (t, `) modi�es r and x:

r (t, `) = rBG (`) + ξ (t, `)nr (`) ,

x (t, `) = xBG (`) + ξ (t, `)nx (`) , (15)

where rBG (`) and xBG (`) are the static solutions obtained integrating Eqs. (9) and (10).
The dynamics of the small perturbation can be analyzed expanding the metric function

around the static solution rBG(`) to the third order in ξ (t, `). To this order the NG action
comprises a quadratic and a cubic term. The quadratic term has the form:

S(2) =
1

2πα′

∫
dt

∫ ∞
−∞

d`
(
Cttξ̇

2 + C``ξ́
2 + C00ξ

2
)
. (16)

Ctt, C`` and C00 depend on ` and on the parameters of the metric. The equation of motion
from the action (16) is

Ctt ξ̈ + ∂`

(
C``ξ́

)
− C00 ξ = 0. (17)
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Figure 2: Static string pro�le and perturbation ξ(t, `) along the direction orthogonal to the string
in each point with coordinate `.
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Factorizing ξ (t, `) = ξ (`) eiωt it corresponds to the Sturm-Liouville equation

∂`

(
C`` ξ́

)
− C00 ξ = ω2Ctt ξ , (18)

with W (`) = −Ctt(`) the weight function. Eq. (18) can be solved for di�erent values of
the parameters characterizing the metric. The two lowest eigenvalues ω2

0 and ω2
1 , with the

corresponding eigenfunctions ξ (`) = e0 (`) and ξ (`) = e1 (`) can be obtained. The third
order terms in ξ in the action give us information on the chaotic behavior. Up to a surface
term, the expression is

S(3) =
1

2πα′

∫
dt

∫ ∞
−∞

d`

{
D0 ξ

3 +D1 ξξ́
2 +D2 ξξ̇

2

}
, (19)

with D0,1,2 functions of `. Expanding the perturbation in terms of the �rst two eigenfunc-
tions e0(`) and e1(`),

ξ (t, `) = c0 (t) e0 (`) + c1 (t) e1 (`) , (20)

the time dependence of the perturbation is encoded in the coe�cients c0(t) and c1(t). With
this form of ξ(t, `) we have

S(3) =
1

2πα′

∫
dt

∫ ∞
−∞

d`
[(
D0 e

3
0 +D1 e0é

2
0

)
c30 (t) +

(
3D0 e0e

2
1 +D1

(
2é0e1é1 + e0é

2
1

) )
c0c

2
1

+D2

(
e0e

2
1c0ċ

2
1 + e30e

2
1c0ċ

2
0 + 2e0e

2
1ċ0c1ċ1

)]
. (21)

The action for c0(t) and c1(t) is obtained by S(2) + S(3), integrating over `:

S(2) +S(3) =
1

2πα′

∫
dt
[ ∑
n=0,1

(
ċ2n − ω2

nc
2
n

)
+K1c

3
0 +K2c0c

2
1 +K3c0ċ

2
0 +K4c0ċ

2
1 +K5ċ0c1ċ1

]
.

(22)
The coe�cients K1,...,5 depend on r0 and on the parameters of the metric. In general the
potential described by Eq. (22) has a trap for the unstable string con�gurations. We are
interested in the motion of c0 and c1 in the trap. In some regions of the potential the kinetic
term is negative. As shown in [25, 1], it is useful to replace c0,1 → c̃0,1 in the action, with
c0 = c̃0 + α1c̃

2
0 + α2c̃

2
1 and c1 = c̃1 + α3c̃0c̃1, neglecting O

(
c̃4i
)
terms, setting the constants

αi ensuring the positivity of the kinetic term. This replacement stretches the potential and
stabilizes the time evolution of the system. The dynamics is not a�ected, and a chaotic
behavior shows up in the transformed system.

4 Geometry

The procedure can now be applied to speci�c cases. Interesting systems could be a QQ̄
pair in a �nite temperature and baryon density background, and the pair in a constant and
uniform magnetic �eld at �nite temperature. The �rst one would allow us to test (2), and
therefore to relax the MSS bound in the presence of a global symmetry, and the other is
relevant in di�erent phenomenological contexts. We need to specify the dual metric of the
systems solving Einstein equations with suitable boundary conditions.
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4.1 Finite baryon density

Consider a Lagrangian of a quantum �eld theory with a U (1) gauge symmetry and a Dirac
fermion charged under this symmetry,

L = iψ̄γµDµψ −
1

4g2
FµνFµν , (23)

with the covariant derivative Dµ = ∂µ + iAµ. A chemical potential can be introduced
considering a non-vanishing background �eld

A0 = µ, Ai = 0 (i = 1, . . . , 3). (24)

This generates a potential of the form

V = −µ ψ†ψ. (25)

Since ψ†ψ = N̂ is the number operator, µ is the chemical potential by de�nition: it
represents the change in energy of the system when a particle is added.

We are interested in �nding the AdS gravity dual of this system. In general the gravity
action describing the 5-dimensional asymptotic AdS space and the gauge �eld is given by

S =

∫
d5x
√
−G

[
1

2k2
(R− 2Λ)− 1

4g2
FMNF

MN

]
, (26)

where 2k2 is proportional to the �ve-dimensional Newton constant and g2 is a �ve-dimensional
gauge coupling constant. In the AdS5 space, the cosmological constant is given by Λ =
−6/L2, where L is the radius of the AdS space. The equations of motion of this system are

RMN −
1

2
GMNR+GMNΛ =

k2

g2

(
FMPF

P
N −

1

4
GMNFPQF

PQ

)
,

0 = ∂M
√
−G GMP GNQFPQ,

(27)

the Einstein equations and the Maxwell ones. Knowing the �ve-dimensional gauge �eld AM

in the AdS space, Eq. (27) gives the metric of the space. To recover the gauge theory at the
boundary of the AdS space we set

A0 (xµ, z) = µ−Qz2, Ai = A4 = 0 (i = 1, 2, 3), (28)

where z = 1/r is the bulk coordinate in the Fe�erman-Graham coordinate system. The line
element of a 5-dimensional asymptotic AdS spacetime reads

ds2 =
L2

z2

(
−f (z) dt2 + d~x2 +

1

f (z)
dz2
)
, (29)

and the boundary is z = 0.
Solving Eq. (27) we obtain the Reissner-Nordstrom AdS black-hole

f (z) = 1−mz4 + q2z6, (30)

where m is the mass of the black-hole and q is its charge. Introducing Eq. (28) and Eq. (30)
in Eq. (27) and evaluating it a the boundary z = 0 we obtain a relation between q and Q

q2 =
2k2

3g2L2
Q2. (31)
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In the AdS/QCD context, the gravitation constant 2k2 and the 5-dimensional coupling
constant g2 are related to the rank of the gauge group Nc and the number of �avors Nf in
QCD [35]

1

2k2
=

N2
c

8π2L3
and

1

g2
=
NcNf
4π2L

, (32)

therefore, Eq. (32) can be written as

q =

√
2

3

Nf
Nc

Q. (33)

The RN black-hole has two horizons identi�ed by the solutions of

f (zh) = 1−mz4h + q2z6h = 0. (34)

We can write the mass of the black-hole as a function of the outer horizon and of its charge:

m =
1

z4h
+ q2z2h. (35)

To show the relation between the charge q and the chemical potential µ we can observe that
to have a regular norm AM (xµ, z)AM (xµ, z) ≡ G00A0A0, A

0 (xµ, z) should vanish at the
outer horizon therefore

A0 (xµ, zh) = µ−Qz2h = 0. (36)

This gives

Q =
µ

z2h
. (37)

Using Eq. (33) we have the relation between the charge of the black-hole and the chemical
potential

q =

√
2

3

Nf
Nc

µ

z2h
. (38)

Inserting Eq. (35) and Eq. (38) in Eq. (30) we obtain:

f (z) = 1− z4

z4h
−
(

2

3

Nf
Nc

)
µ2z4

z2h
+

(
2

3

Nf
Nc

)
z6µ2

z4h

= 1− z4

z4h
− µ2z4

z2h
+
z6µ2

z4h
,

(39)

where the coe�cient 2
3
Nf

Nc
is absorbed in the de�nition of µ2. Returning to the r coordinates

we obtain the RN metric function

f (r) = 1− r4h
r4
− µ2r2h

r4
+
r4hµ

2

r6
. (40)

The line element is obtained from Eq. (29) setting L = 1

ds2 = −f (r) r2dt2 + r2d~x2 +
1

r2f (r)
dr2, (41)

and the Hawking temperature T is
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T =
rh
π

∣∣∣∣1− µ2

2r2h

∣∣∣∣ . (42)

4.2 Magnetic �eld

A magnetic �eld is introduced in the holographic framework by a U(1) gauge �eld FMN

which modi�es the 5d geometry. The metric is determined solving the Einstein equations:

RMN −
1

2
gMN (R+ 12)− TMN = 0 (43)

with the 5d stress-energy tensor

TMN = 2 (gABFMAFNB −
1

4
gMNF

2) . (44)

For a constant magnetic �eld B in the x3 direction F is given by F = B dx1 ∧ dx2, hence
the only nonvanishing components are F12 = −F21 = B. The Einstein equations have been
solved perturbatively in the low-B and high temperature limits in Refs. [36�38]. The result
for the line element, having the general expression

ds2 = gttdt
2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 + grrdr

2 (45)

with r > rh, reads:

gtt = −r2f(r), g11 = g22 = r2h(r), g33 = r2q(r), grr =
1

r2f(r)
. (46)

The metric functions are expressed as [38]

f(r) = 1− 2B2

3r4
log r +

f4
r4

(47)

q(r) = 1− 2B2

3r4
log r (48)

h(r) = 1 +
B2

3r4
log r . (49)

The magnetic �eld breaks rotational invariance, hence g22 6= g33. The geometry has a
horizon, the position of which rh is found requiring f(rh) = 0. This gives f4 = −r4h +
2

3
B2 log(rh) and the blackening function f(r)

f(r) = 1− r4h
r4
− 2B2

3r4
log

r

rh
. (50)

The Hawking temperature T depends on the magnetic �eld:

T =
rh
π

(
1− B2

6r4h

)
. (51)

The metric given in terms of the functions (47)-(49) is obtained for large bulk coordinate r
and low B, and it is important to reckon the minimum value of r and the largest value of B
for which it is a good approximation of Eqs. (43),(44) and (46). This metric can be compared
to the one obtained by numerical solution of the Einstein equation. The comparison shows
that the deviation in using the approximated metric are small and can be safely used.
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5 Poincaré sections and Lyapunov exponents

We can apply the procedure discussed in section 2 and 3. We start by choosing a static
string con�guration �xing the tip position of the string. We consider the energy of the
string con�guration as a function of r0, Fig. 3, and observe that the the energy has a peak
near the BH horizon. The con�gurations closer to the horizon are unstable, and the e�ect
of chaos is enhanced. r0 = 1.1 is chosen as the tip position for the static con�guration for
both metrics.

μ=0

μ=0.6

μ=1.2

1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.6

-0.4

-0.2

0.0
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E
Q
Q_

B=1

x1 configuration

x3 configuration

B=0

1.0 1.2 1.4 1.6 1.8 2.0
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

r0
E
q
q_

Figure 3: Energy of the string con�guration as a function of r0 for di�erent values of chemical
potential µ (left) and magnetic �eld B (right). The maximum divides the unstable con�gurations
(red dotted line) form the metastable (blue dashed line) and stable (solid black line) ones. (For
interpretation of the references to color in this �gure legend, the reader is referred to the web version
of this article [https://jhap.du.ac.ir/].)

We now perturb the static string, and from Eq. (22) we obtain the dynamics of the �uctuation
through the functions c0 (t) and c1 (t). The onset of chaos is displayed by the Poincaré
sections. We construct the sections de�ned by c̃1 (t) = 0 and ˙̃c1 (t) > 0 for bounded orbits
within the trap in the potential. Setting rh = 1 and r0 = 1.1 for both metrics, we obtain
the sections Fig. 4,5 for di�erent values of µ and B. For c̃0 near zero the orbits are scattered
points which depend on the initial conditions. Increasing µ or B the points in the sections
arrange in more regular paths, showing that the e�ect of switching on the magnetic �eld, or
the interaction with a baryon reservoir is to mitigate the chaotic behavior.
In Fig. 5 we observe that when the string is along x3 we go closer to c̃0 = 0 to observe
chaos. In the Poincaré plots we set c̃1 = 0. In this case the potential has a trap for
c̃0 < 0. Considering the de�nition of the perturbation given in Eqs. (15) and (20), the
perturbation characterized by c̃1 = 0 and c̃0 < 0, corresponding to c1 = 0 and c0 < 0,
describes a string moving away from the event horizon. Therefore, for (c̃0, c̃1) = (0, 0),
hence for (c0, c1) = (0, 0), the tip of the string is closest to the horizon.

We evaluate the Lyapunov exponents. In the four dimensional c0, c1 phase-space they
can be computed for di�erent values of µ or B using the numerical method described in [39].
A convergency plot is shown in Fig. 6, together with the sum of the Lyapunov exponents
which converges to zero with the evolution.
The convergency plot is a damped oscillating function. The value of the largest Lyapunov
exponent can be extrapolated �tting the maximum in each oscillation and considering t→
+∞. The values obtained decrease as µ or B increases, as shown in Fig. 7: the e�ect of
the magnetic �eld and the chemical potential is to soften the dependence on the initial
conditions, making the string less chaotic. At the right in Fig. 7 the results for the two
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Figure 4: Poincaré sections for a time-dependent perturbed string, obtained changing the initial
conditions, with r0 = 1.1 and increasing the chemical potential µ = 0.3 (top row), µ = 0.6 (middle
row) and µ = 0.9 (bottom row), for c̃1 = 0 and ˙̃c1 ≥ 0. The plots in the right column enlarge
the corresponding ones in the left column in the range of small c̃0, ˙̃c0. (For interpretation of the
references to color in this �gure legend, the reader is referred to the web version of this article
[https://jhap.du.ac.ir/].)

con�gurations are compared. For the same values of B and r0, so at the same distance
from the BH horizon, smaller Lyapunov exponents are found in the x3 con�guration. The
Poincaré plots show that chaos is produced in the proximity of the BH horizon, and that the
string dynamics is less chaotic if the chemical potential or the magnetic �eld increases. This
is con�rmed by the largest Lyapunov exponent. As we can see from the plots in Fig. 7, the
MSS bound is satis�ed for both the metrics, since 5/3 ≤ λMSS ≤ 2 and 0.56 ≤ λMSS ≤ 2
for the two considered cases.

The AdS-RN metric in Eq. (41) can be modi�ed with a warp factor, used to implement
a con�nement mechanism in holographic models of QCD [40]. The line element is de�ned
as

ds2 = e−
c2

r2

(
−f (r) r2dt2 + r2d~x2 +

1

r2f (r)
dr2
)
, (52)

with metric function f(r) in (40). The Hawking temperature does not depend on the dilaton
parameter c, therefore it is given in Eq. (42). The warp factor mainly a�ects the IR small r
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Figure 5: Poincaré sections for a perturbed string in the x1 (left column) and x3 con�gurations
(right column). The initial conditions are changed with �xed energy E = 10−5 and r0 = 1.1. The
magnetic �eld is increased from B = 0.3 (top row) to B = 0.6 (middle row) and B = 1 (bottom
row). The sections correspond to c̃1 = 0 and ˙̃c1 > 0. (For interpretation of the references to color in
this �gure legend, the reader is referred to the web version of this article [https://jhap.du.ac.ir/].)

region, while the geometry became asymptotically AdS5 in the UV r →∞ region. A dilaton
factor has been used to study features of the QCD phenomenology at �nite temperature and
baryon density, namely the behavior of the quark and gluon condensates increasing T and
µ, the phase diagram, and the in-medium broadening of the spectral functions of two-point
correlators [40�43]

To study the dependence on the dilaton parameter c, we inspect the Poincaré plots and
compute the Lyapunov exponents. The Poincaré sections for rh = 1, r0 = 1.1, µ = 0 at
di�erent c are shown in Fig. 8.
As we can see from the Poincaré section increasing the dilaton parameter stabilizes the
system. This is con�rmed by the maximum Lyapunov exponent as a function of c, Fig 9.
The MSS bound is satis�ed, since λMAX � λMSS = 2 for all values of the dilaton parameter
c.

6 Conclusions

We have presented a method to explore the chaotic behavior of a strongly coupled QQ̄
system at �nite temperature through its gravity dual system. This allow us to test the
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Figure 6: Left: convergency plot of the four Lyapunov exponents for a string along x1, with r0 = 1.1
and B = 0.6. 2×105 time steps are shown. For the initial conditions, the energy is set to E = 10−5

together with c̃0 = −0.0002, ˙̃c0 = 0, c̃1 = 0.0011. Right: sum of the Lyapunov exponents for the
same value of B. (For interpretation of the references to color in this �gure legend, the reader is
referred to the web version of this article [https://jhap.du.ac.ir/].)

Maldacena, Shenker and Stanford conjecture. Chaos has been observed in the Poincaré
plots, characterized by scattered points in the region close to the black hole horizon, and
quantitatively described computing the Lyapunov exponents. The system becomes less
chaotic increasing µ, B and c. For the magnetic �eld case, anisotropy e�ect in two di�erent
orientations of the string is found. The stabilization e�ect of the magnetic �eld is stronger for
the con�guration with string endpoints lying on a line parallel to the �eld. The MSS bound
(1) is satis�ed for the largest Lyapunov exponent and therefore, also the generalization (2).
The MSS bound remains universal.
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Figure 7: Largest Lyapunov exponent λMAX versus µ (left) and B (right) for r0 = 1.1. In the plot
at right the results for the x1 (blue squares) and x3 string con�gurations (red points) are shown.
(For interpretation of the references to color in this �gure legend, the reader is referred to the web
version of this article [https://jhap.du.ac.ir/].)
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Figure 8: Zoom in the small c̃0, ˙̃c0 region of the poincaré section for the perturbed string in the
background geometry with warp factor (52), for r0 = 1.1, µ = 0 and parameter of the dilaton c = 1
(left) and c = 2 (right). The sections are obtained setting the energy E = 1 × 10−5 and a time
evolution of 8× 10−3 time steps. (For interpretation of the references to color in this �gure legend,
the reader is referred to the web version of this article [https://jhap.du.ac.ir/].)
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Figure 9: Largest Lyapunov exponent for r0 = 1.1 and µ = 0, increasing the dilaton constant.
(For interpretation of the references to color in this �gure legend, the reader is referred to
the web version of this article [https://jhap.du.ac.ir/].)
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