
Journal of Holography Applications in Physics
Volume 6, Issue 2, Spring 2026, 104–118
©Available online at http://jhap.du.ac.ir
DOI: 10.22128/jhap.2025.3147.1161
Online ISSN: 2783–3518

Review article

Gravitational Lensing by Kalb-Ramond Black Holes
Coupled by Nonlinear Electrodynamics

Aadya Sharma · Dharm Veer Singh · Bablu
1 Department of Physics, Institute of Applied Science and Humanities, GLA University, Mathura

281406, India;
Corresponding Author E-mail: aadyasharma012@gmail.com

2 Department of Physics, Institute of Applied Science and Humanities, GLA University, Mathura
281406, India;
E-mail: veerdsingh@gmail.com

3 Department of Physics, Institute of Applied Science and Humanities, GLA University, Mathura
281406, India;
E-mail: babluchaudhary0003@gmail.com

Received: November 16, 2025; Revised: December 15, 2025; Accepted: December 22, 2025

Abstract. In this paper, we study the black hole solution coupled with the Kalb–
Ramond (KR) field and nonlinear electrodynamics (NLED). The obtained black hole
solutions interpolate between a Kalb-Ramond black hole in the absence of NLED and
the Schwarzschild black hole in the limit of vanishing KR and NLED field. We study
gravitational lensing by a black hole solution. In addition, we estimate the mass pa-
rameter and constrain it using observational data.
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1 Introduction
General Relativity is a theory of gravity given by Albert Einstein in 1915, which is now used
as a standard depiction of modern physics [1]. Previously gravity was understood as a force
but general relativity redefined our understanding of gravity as the curvature of space and
time due to mass and energy. In 1919 Eddington validated it by observing the total solar
eclipse [2] and Event Horizon Telescope (EHT) Collaboration give the first-ever image of
the M87 galaxy [3–11]. The bending of light rays due to the presence of matter (massive
objects) manifests as gravitational lensing. Virbhadra and Ellis elucidated the gravitational
lensing produced by a Schwarzschild black hole [12,13]. The Gravitational lensing can occur
in three ways: strong, weak and micro lensing. The Strong lensing occurs due to massive
bodies and the images formed can be resolved and there must be close alignment between
lens and the source. Weak lensing occurs when the lens is not so powerful and the images
formed are distorted but magnified and the Micro lensing occurs due to small lenses like stars
and exoplanets. There are many studies of gravitational lensing for the solution presented
in refs [14–19].

On the theoretical side, the study of Lorentz symmetry breaking (LSB) is important
for understanding quantum gravity processes in fundamental physics [20–24]. An example
of a LSB is the Bumblebee gravity theory [25] and another example is the Kalb Ramond
(KR) gravity theory, which incorporates a nonminimally coupled tensor field Bµν , known as
the KR field [26]. The string theory suggests that this symmetry might break at very high
energies. In string theory, the particles are replaced with tiny vibrating strings. The KR
field couples naturally to these strings similarly as electromagnetic vector potential couples
to point particles.

In this paper, we generalize regular black hole in KR gravity. The Bardeen black hole
is regular black hole (center singularity is absent) is proposed by Bardeen based on the
Sakharov [27] and Gliner proposal [28] and 30 year later an exact solution of Bardeen black
hole [29] was obtained when gravity is coupled with nonlinear electrodynamics (NLED)
[30–33]. There are many black hole solution based on Bardeen [34–48]. In this work we focus
on strong field limit of Bardeen black hole in KR field and analyze it’s lensing observables.

The paper is organized as follows, we obtain an exact black hole solution in the presence
of KR gravity coupled with NLED in Sec. 2, and study the location of the horizon structure.
The study of the unstable circular orbit of obtained black hole solutions in the Sec. 3. The
Sec. 4 is devoted to study the observable of the Bardeen KR black hole in the strong field
limit including Einstein ring and magnification. Finally, the concluding remarks and results
are presented in Sec. 5.

2 Kalb-Ramond field for regular black holes
In this section, we discuss a regular black hole solution in the field limit of KR. The KR
gives a breaking of Lorentz symmetry. We are considering a spherically symmetric and static
black hole solution in this field limit.

ds2 = −A(r)dt2 +
dr2

A(r)
+ C(r)dΩ2, (2.1)

with

A(r) =
1

1− l
− 2Mr2

(r2 + g2)3/2
, (2.2)



Gravitational Lensing by Kalb-Ramond Black Holes Coupled by Nonlinear Electrodynamics 107

where, dΩ2 = dθ2 + sin2 θdϕ2 where l denotes Lorentz symmetry violation effect by KR
field’s non - zero vacuum expectation value and it is a dimensionless quantity. To find the
horizons of this black hole solution, we find roots by A(r) = 0. The roots or zeroes means
the curve cuts the r axis and the number of crossing shows the number of roots. Here, we
get two real roots from A(r) = 0 which corresponds to Cauchy and Event Horizon.

As we can observe, the metric (2.1) has a coordinate singularity at A(r) = 0, which
results in two real roots as follows:

r = ± 1√
6

√
3
√
2
(
2A4 − 12A2g2 + 3

√
2B2/3

)
3
√
B

− 6g2 + 2(A)2, (2.3)

where B = 2A6 − 18A4g2 + 27A2g4 + 3
√

81A4g8 − 12A6g6, and A = l − 1.
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Figure 1: Plots of f(r) vs r for different values of l with fixed values of magnetic charge (g).

Fig. 1 has horizon plots in which we use variation of l with fixed parameters magnetic
charge g = 0.1. We can observe from Fig. 1, that the size of the black hole decreases
with an increase in l. We calculate equation of motion and effective potential for this
black hole solution. We consider a spacetime which is spherically symmetric. Time-like
killing vector (∂/∂t)µ corresponding to time translation and space-like killing vector (∂/∂ϕ)µ
corresponding to spatial rotations and (θ = π/2) is considered an equatorial approximation.

3 Unstable Circular Orbit
The motion should satisfy the constraint gµν ẋ

µẋν = −k, where value of k can be 1 or 0
for massive and massless particles respectively. As we consider spacetime to be spherically
symmetric, it can be assumed that at equatorial surface θ = π

2 the movement takes place.
As the metric does not depend on either t or ϕ, the conjugates of t and ϕ give two constants
of motion. The energy and angular momentum of the particle can be calculated as follows

E = A(r)ṫ, (3.1)

L = r2ϕ̇. (3.2)
For the null geodesic equation i.e., ds2 = 0 and using Eqs.(3.1) and (3.2), we get the relation
of the effective potential with the radial motion of the photons or particle moving around
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the black hole as follows,
ṙ2 = E2 − L2A(r)

C(r)
. (3.3)

The radial effective potential Veff = L2 A(r)
C(r) , given as

L2

r2

(
1

1− l
− 2Mr2

(r2 + g2)3/2

)
. (3.4)
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Figure 2: Plots of Veff vs r for varying impact parameter,u with constant values of magnetic
charge g. and l

In gravitational lensing, a particle will reach a distance i.e. distance of minimum approach
(r0) from gravitational lens before being deflected by gravitational pull of the lens. For such
distance, we relate this with impact parameter, which is denoted by u with closest distance
as shown below

u =

√
C(r0)

A(r0)
. (3.5)

For photons oscillating close to the black hole, the turning point of the particle i.e., ṙ = 0,
and the photon sphere radius rm can be calculated from

A′(r)

A(r)
=

C ′(r)

C(r)
. (3.6)

The above equation Eq. (3.6) have at least one real solution and then the largest real value
defines the radius of the unstable circular photon orbits. The value of the impact parameter
u = um for radius rm defines the value of critical impact parameter. For calculating the
value of deflection angle in strong field limit, a method is developed by Bozza [49]. According
to it, the total deflection angle by the light from source to observer is given as

α(r0) = I(r0)− π, (3.7)

where I(r0) is

I(r0) = 2

∫ ∞

r0

dϕ

dr
dr =

∫ ∞

r0

2dr√
A(r)C(r)

√
C(r)A(r0)
C(r0)A(r) − 1

. (3.8)
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According to Bozza [49] we expand the deflection angle near the photon sphere, for this we
define a new variable z as

z =
A(r)−A(r0)

1−A(r0)
, (3.9)

the integral (3.7) can be rewritten as

I(r0) =

∫ 1

0

R(z, r0)f(z, r0)dz, (3.10)

in which the function R(z, r0) is

R(z, r0) =
2
√

C(r0)(1−A(r0))

C(r)A′(r)
, (3.11)

and it remains as regular for every value of z and r0. The function f(z, r0) is

f(z, r0) =
1√

A(r0)− A(r)
C(r)C(r0)

, (3.12)

where r = A−1[(1 − A(r0))z + A(r0)]. By Taylor series expansion for function from Eq.
(3.12), we get

f0(z, r0) =
1√

λ1(R0)z + λ2(r0)z2
, (3.13)

where
λ1(r0) =

1−A(r0)

A′(r0)C(r0)
[C ′(r0)A(r0)−A′(r0)C(r0)], (3.14)

λ2(r0) =
(1−A(r0))

2

2A′(r0)3C(r0)2
[
2C(r0)C

′(r0)A
′(r0)

2 +A(r − 0)A′(r0)C(r0)C”(r0)− C(r0)C
′(r0)

]
.

(3.15)
The integrand term f(z, r0) diverges for r0 → rm leading to diverging deflection angle in
Eq. (3.10). To remove this divergence, we used Taylor series expansion and subtracted this
divergence term from I(r0) to get the regular term IR(r0). R(z, r0) is regular for all values
of z. Following the above definitions, the diverging part in the integral Eq. (3.10)can be
expressed as

ID(r0) =

∫ 1

0

R(0, rm)f(z, r0)dz, (3.16)

and the regular part IR(r0) is defined as

IR(r0) = I(r0)− ID(r0) =

∫ 1

0

(R(z, r0)f(z, r0)−R(0, rm)f(z, r0)) dz, (3.17)

where ID(r0) shows logarithmic divergence and IR(r0) is regular with divergence subtracted
from the complete integral (3.10). We calculate the value of deflection according to [49]

αD(r0) = ā log(
r0
rm

− 1) + b̄+O(r0 − rm), (3.18)

where
ā =

R(0, rm)

2
√
λ2(rm)

, (3.19)
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b̄ = −π + IR(xm) + ā log

(
2λ2(rm)

Arm)

)
, (3.20)

The Eq. (3.18) can be expressed by using a coordinate independent variable, impact param-
eter u, as follows

α(u) = −ā log

(
u

um
− 1

)
+ b̄ = O(u− um), (3.21)

where ā and b̄ defines the strong deflection limit coefficients.
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Figure 3: Plot for photon circular orbit, impact parameter um vs g with different values of
l.

In Fig. 3, we plot the impact parameter um for the photons moving on the unstable
circular orbits around the black hole. In Fig. 3, we observe um decreases with l. In Fig. 4
the deflection angle αD(u) is plotted with various values of l and the deflection angle as a
function of the impact parameter u. In Fig. 4 deflection angle decreases with increasing l.
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Figure 4: The plot of deflection angle for magnetic charge, g = 0.1. as a function of impact
parameter, u
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4 Observables
We have calculated the deflection angle using Eq. (3.21), we can find the image positions
using Virbhadra-Ellis lens equation [12]. The lens equation has an observational setup of
gravitational lensing, the position of observer O, black hole L, the source S and the position
of image due to lensing in a given coordinate system can be calculated as [12]

DOS tanβ =
DOL sin θ −DLS sin (α− θ)

cos (α− θ)
, (4.1)

where β and θ denotes the angular separation among image and source of black hole. The
distance between black hole and source, observer and source, observer and black hole are
DLS , DOS and DOL respectively. Considering small values of Θ and β for perfect alignment
of source, black hole and observer, then Eq. (4.1 can be simplified to,

β = θ − DLS

DOS
∆αn. (4.2)

In above equation ∆αn defines deflection angle for the nth image

θn = θ0n +
(DOL +DLS)

DLS
.
umem
DOLā

(β − θ0n). (4.3)

4.1 Einstein Ring
It has been observed that when a source is placed in front of the lens, it could produce
relativistic images and form Einstein Rings.[12] When the lens, source and observer are
perfectly aligned in presence of strong gravitational lensing, conditions are met and Einstein
rings are formed. We can calculate the Einstein rings position using β = 0 andDOS = 2DOL,
θ0n as some reference initial position for image from either side of the lens as follows

θEn =
um

DOL
(1 + en), (4.4)

where en as
en = e

b̄
ā− 2nπ

ā . (4.5)
Eq. (4.4) gives radii of rings of the nth relativistic Einstein ring. Here n = 1 gives the
outermost ring. The Einstein ring size decreases for the higher order of n, where n is an
integer except 0. As the distance between observer and lens increases, the Einstein ring size
decreases. In the case of massive black holes, the Einstein ring size becomes large. Due to
strong lensing, there are infinitely many apparent images formed for the actual source and
because of their large number, these images appear in form of rings.
In Fig. 5 we have plotted the Einstein rings of two astrophysical black holes, SgrA*, and

M87*, respectively. It is observed that angular radius for both black hole decreases due to
parameter l and the radius of the Einstein ring increases as mass of the object increases and
is hence directly proportional. In Fig. 5 it clear that angular radius for SgrA* is grater than
M87*.

4.2 Magnification
Magnification is another source of information in strong field limit observable. It is defined
as the ratio between the solid angles subtended by the image to the solid angles subtended
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Figure 5: The plots of Einstein rings for astrophysical black hole SgrA*(left) and M87*(right)
with fixed value of magnetic charge (g).

by the source, and is determined by the following relation,

µ =

(
sinβ∂β

sin θ∂θ

)−1

. (4.6)

Using Eqs. (4.2) and (4.5), the magnification is expressed in the context of strong deflection
limit coefficients is given by

µn =
1

β

[
um

DOL
(1 + en)

(
DOSumen
DLSDOLā

)]
. (4.7)
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Figure 6: Magnification for fixed value of magnetic charge, g for astrophysical black hole
M87*(right) and SgrA*(left) with position of source β.

In Fig. 6 it is observed that the magnification is inversely proportional to the position of
the source and magnification diverges when the position of the source approaches zero. From
Fig. 6 we can verify that magnification of M87* is small as compared to the magnification
of SgrA*. For relating analytical results with observations, we use the observables defined
by Bozza [49] as follows,

θ∞ =
um

DOL
, (4.8)
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s = θ∞(e
b̄−2π

ā ), (4.9)

rmag = e
2π
ā , (4.10)

here s defines the angular separation among the outermost image formed from the rest of
the images, rmag defines the ratio of received flux of first image to the received flux of rest
of the images clustered at θ∞. Here, θ∞ is known as the position of the innermost packed
image and is defined as the angular radius of the photon sphere.

In comparison to Schwarzschild black hole, the angular separation observed between
images are relatively higher and the magnification is relatively lower. Whereas when fixed
value parameters are considered, Sgr A* black hole shows relatively higher angular separation
as compared to M87* black hole. In Figs. 7 and 8 we plotted lensing observables θ∞ and s
versus magnetic charge g for both astrophysical black hole SgrA* and M87*. The limiting
value for angular position θ∞ decreases with l and is lower than that of a Schwarzschild black
hole. In case of of separation between the image, s, for Kd is larger than the Schwarzschild
black hole and it further increases with l.
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Figure 7: Plots showing the behavior of observables for strong lensing, θ∞ of astrophysical
black hole M87*(right) and SgrA*(left) versus magnetic charge g with variation of l.
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5 Conclusions
The gravitational lenses generated by black hole described by KR with Bardeen modifica-
tion in KR field limit in which LSB implemented with parameter l are studied. We first
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demonstrated the solution and plotted a horizon plots for KR modified field limit. Further
we proceed to the equations of motion and effective potential Veff in Fig. 2 is a radial
effective plot. We calculated the deflection angle αD and strong lensing coefficients ā and b̄.
Furthermore, we have applied the results to lensing observables and plotted these plots in
Fig. 6, 7 and 8 for both astrophysical black hole SgrA* and M87* and compare the results
with Schwarzschild black hole lensing observables. In which we found that limiting value of
angular position θ∞ is smaller than Schwarzschild field limit black hole. Magnification µ is
diverse when source position, β tends to zero. The separation between images s is larger
than the Schwarzschild black hole.
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