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1 Introduction
The size of an operator [1] is a measure of the average number of elementary operators
that are present in its expansion. For times shorter than the scrambling time1 it is also a
measure of the number of elementary operations that are required to prepare the operator,
i.e., operator complexity. During the early phases of evolution, complexity and size are
indistinguishable. This paper is about that early phase; therefore I will use the symbol C
for both.

While the concepts of size and complexity have not been precisely formulated for a
continuum quantum field theory, they are well-defined for systems composed of a finite
number of qubits, or as in the case of the SYK model, a finite number of fermionic operators.

The momentum-size correspondence [3–5] is a holographic quantum-mechanical relation
between the size of an operator and the radial momentum P of the system created by acting
with that operator. Roughly speaking, it says that size and momentum are proportional to
one another, with a dimensional proportionality factor β̃ which may depend on the radial
location of the particle. It is also possible to think of β̃ as a function of the time by following
it along a light-like trajectory. We will return to the meaning of β̃.

In the context of the SYK model an alternative formulation of the momentum-size cor-
respondence was given in [5,6],

P =
dC
du
, (1.1)

where u is the ordinary time conjugate to the SYK Hamiltonian.
Operator size is not conserved and in many contexts one sees a tendency for it to increase

with time [1], a phenomenon called operator growth2. Since the force on a system is the
time-rate-of-change of its momentum, the momentum-size correspondence implies a rela-
tionship between force and operator growth, and therefore between dynamics and quantum
information. This has been illustrated for gravitational force, but it should also apply to
other forces such as electromagnetic.

Recent studies of these connections [3–5] have concentrated on the gravitational force of
attraction on a particle falling into the long AdS(2) throat of a near-extremal SYK black
hole. Although the SYK black hole is in many respects very similar to a near-extremal
Reissner-Nordstrom (NERN) black hole, the usual Majorana-SYK system does not carry
a conserved U(1) charge, and therefore does not provide an opportunity to explore the
mechanism leading to electric forces. However the model can be generalized to have a global
U(1) symmetry [7] by replacing the real fermionic degrees of freedom by complex fermions,
ψ and ψ† [7,8]. The model will be U(1) invariant if each term in the Hamiltonian has an
equal number of ψs and ψ†s.

Standard lore says that if a holographic theory has a global symmetry then the bulk
system that it describes will have a gauge symmetry. In the case of the U(1)-SYK system the
bulk dual is the long throat of a near extremal black hole. As such it is a (1+1)-dimensional
system with no propagating gauge degrees of freedom, but there will be one-dimensional
Coulomb forces between charges. In particular a charged black hole should exert forces
on charged particles in the throat—attractive for opposite-sign and repulsive for like-sign
charges. If we combine this observation with the momentum-size correspondence it predicts
a difference in the growth rates for positively and negatively charged fermionic operators.

1We will assume that the Hamiltonian is of the fast-scrambling type such as all-to-all k-local Hamiltonians
or sparse Hamiltonians of the type discussed in [2]

2Because quantum mechanical evolution is reversible operators can also shrink, but we will include this
possibility under the general heading of operator growth.
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The purpose of this paper is to see the “nuts and bolts” of how this occurs in the quantum
mechanics of the U(1)-SYK system.

In [4,5] two calculations were compared. The first was a general relativity calculation of
the proper spatial momentum P (t) of a neutral particle falling into a NERN background.
The second was a microscopic calculation [9] of the size of the Heisenberg operator ψ(t)
in standard SYK which made no use of any assumption of a gravitational dual. Using the
momentum-size correspondence the calculations were shown to agree in detail.

In this paper we generalize this strategy to the U(1)-SYK model by calculating the
motion of a charge ±1 particle falling through the long throat of a near extremal U(1)-
charged black hole. The acceleration (rate of change of momentum) of the particle depends
on whether the particle and black hole have the same or opposite sign charges. We then
study the operator growth of the charged operators ψ(t) and ψ†(t). For a given charge on
the black hole we find that the operator growths of ψ(t) and ψ†(t) differ in just the way
predicted by the momentum-size correspondence.

2 Preliminaries

2.1 The Bulk
In previous papers [4][5] the Majorana-SYK model was compared with the dynamics of
neutral particles in a background of a dimensionally reduced Reissner-Nordstrom black hole.
In this paper we will replace the Reissner-Nordstrom background with the closely related
but slightly simpler solution of the (1 + 1)-dimensional dilaton-gravity theory discussed in
[10]. The model is a variant of the Jackiw-Teitelboim (JT) theory described by the action,

I = − 1

16πG

[∫
d2x

√
g (Φ0 + ϕ)R+

1

µ2

√
gϕ+BT+MT

]
, (2.1)

where Φ0 is a dimensionless constant, ϕ is a dynamical field, BT stands for a boundary
term, and MT stands for matter terms. The term proportional to Φ0 is topological and
determines the zero-temperature extremal entropy. We will define the dilaton field Φ by,

Φ(x) = Φ0 + ϕ(x). (2.2)

The parameter µ has units of length and determines the radius of curvature of the AdS(2)
solution.

The variational equation for ϕ requires the curvature to be constant,

R = −1/µ2, (2.3)

and the equations generated by variation with respect to the metric are,

∇µ∇νϕ− gµν∇2ϕ+ gµνϕ = 0, (2.4)

which, together with boundary conditions, determine ϕ.
The solution of the equations of motion for the metric is AdS(2) which can be written

in the form,

ds2 = −r
2 − µ2

µ2
dt2 +

µ2

r2 − µ2
dr2. (2.5)

The point r = µ represents the horizon but unlike in higher dimensions the coordinate r
does not signify the radius of a sphere. Nor is its value at the horizon related to entropy. In
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JT-gravity that role is played by the dilaton field Φ(r) whose value at the horizon determines
the entropy according to,

S =
Φ(µ)

4G
. (2.6)

The JT equations of motion of the dilaton field are solved by the sum of the constant term
Φ0 and a varying part ϕ(r) which varies according to,

ϕ = c(β) r. (2.7)

The factor of proportionality c(β) in is temperature dependent and will be fixed in section
4.

The proper distance from the horizon will be called σ,

σ =

∫ r

µ

dr′
µ√

r2 − µ2
, (2.8)

from which we find,
r = µ cosh (σ/µ). (2.9)

The metric takes the form,

ds2 = − sinh2(σ/µ)dt2 + dσ2. (2.10)

Defining y = σ/µ and t/µ = iθ the Euclidean continuation has the familiar form of the
hyperbolic disc,

ds2 = µ2
[
(sinh2 y) dθ2 + dy2

]
. (2.11)

2.2 The Boundary
In the model of [10] the geometry ends at a boundary located at the value of the radial
variable y at which the circumference of the circle (0 < θ ≤ 2π) is the inverse temperature
β,

sinh yb =
β

2πµ
.

The subscript b stands for boundary. (See Figure 1)
In terms of σ the boundary is at

sinh (σb/µ) =
β

2πµ
. (2.12)

For large β (low temperature),

σb ≈ µ log

(
β

πµ

)
. (2.13)

The time coordinate t is not the proper time of an observer at the boundary. Following [10]
we denote the boundary proper time by u. The relation between t and u is,

u =

(
β

2πµ
t

)
. (2.14)

When considering the relation between JT gravity and the holographic SYK system, the
usual convention is that the time conjugate to the SYK Hamiltonian is u.

It is convenient when studying the motion of a particle that falls in from the boundary
to introduce a coordinate which measures proper distance from the boundary. Calling it ρ,

ρ = (σb − σ). (2.15)

The AdS(2) spatial geometry and the coordinates σ ρ are shown in Figure 2.
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Figure 1: Euclidean AdS(2) can be represented by the Poincare disc. The geometry at finite
temperature is cut off by a boundary shown in red. The bulk geometry is the shaded portion
of the disc.

Figure 2: The spatial geometry of a near-extremal black hole consists of a long throat whose
length diverges in the extremal limit. The throat for non-extremal black holes is bounded
from both ends. At the near-horizon end the AdS geometry gives way to a Rindler region
and at the far end the throat is terminated at a boundary. The coordinates σ and ρ represent
proper distance from the horizon and the boundary respectively.

2.3 Null Trajectory
A particle dropped from the boundary will very quickly become relativistic and move on an
almost light-like trajectory. A light-like trajectory originating at the boundary (ρ = 0) at
time u = 0 will satisfy,

u = β log

(
β + 2πµeρ/µ

β − 2πµeρ/µ

)
− β log

(
β + 2πµ

β − 2πµ

)
. (2.16)

It is easy to show that it will reach the Rindler region in a time β/2π. Assuming β >> µ
then for almost all of that time the trajectory will be in the throat region.

Equation (2.16) can be used to convert a function of spatial position f(ρ) to a function
of time f(u) along an infalling trajectory. In particular the function β̃(ρ) introduced in
[4,5] may be thought of as a function of time along the trajectory of an infalling relativistic
particle.
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3 Classical Particle Motion

3.1 Lagrangian, Momentum, and Hamiltonian
We will begin by deriving the equation of motion of a particle moving in the metric,

ds2 = −f(r)dt2 + 1

f(r)
dr2

= −f(r)dt2 + dσ2, (3.1)

and an abelian gauge field of the form,

Aσ = 0

At(σ) = −(r − rb)E. (3.2)

Here E is constant and represents a uniform electric field and rb is the value of r at the
boundary.

The standard Lagrangian is,

L = −m
√
f(r)− ρ̇2 + eAt(ρ), (3.3)

where dot means derivative with respect to t.
The momentum conjugate to ρ is given by,

P =
∂L
∂ρ̇

=
ρ̇√

f(r)− ρ̇2
, (3.4)

and the Hamiltonian by,

Ht = P ρ̇− L =
mf√

f(r)− ρ̇2
− eAt(ρ). (3.5)

Note that the Hamiltonian Ht is conjugate to t and not to the boundary time u. The
Hamiltonian conjugate to boundary time will simply be denoted by H without any subscript.
The relation between H and Ht is,

H = Ht
dt

du
= Ht

(
2πµ

β

)
. (3.6)

3.2 Force
The radial force Ft on the particle is defined to be dP/dt and is given by,

Ft =
∂L
∂ρ

= −m
2

∂ρf√
f − ρ̇2

+ e
∂At

∂ρ

= −m
2

∂rf√
f − ρ̇2

dr

dρ
+ e

∂At

∂r

dr

dρ
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=
m

2

∂rf√
f − ρ̇2

√
f + e

∂At

∂r

√
f (3.7)

From (3.5) we find,

Ft =
∂rf

2
√
f
(Ht + eAt)− e

∂At

∂r

√
f. (3.8)

The force Ft represents the rate of change of momentum P with respect to t,

Ft =
dP

dt
. (3.9)

The rate of change of P with respect to boundary time will be denoted without a subscript,

F =
dP

du
= Ft

(
2πµ

β

)
. (3.10)

Thus one finds,

F = FG + FE

FG =
∂rf

2
√
f
(H + eAu)

FE = −e∂Au

∂r

√
f, (3.11)

where

Au = At
dt

du
= At

(
2πµ

β

)
.

The subscripts G and E refer to gravitational and electric.
Using (2.13), (2.14), (2.15), and (3.2), in the throat region equation (3.11) may be written

as,

F = FG + FE ,

FG =
H

µ
+ eE(e−ρ/µ − 1),

FE = eEe−ρ/µ. (3.12)

The factors of e−ρ/µ in (3.12) go to zero as we move away from the boundary at ρ = 0. In
particular this means that FG quickly tends to a constant value

FG → H

µ
− eE

while FE rapidly decreases as the particle moves away from the boundary.
For an electrically neutral particle the force has the simpler form,

F =
∂rf

2
√
f
H =

H

µ
. (3.13)
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4 Relation to SYK

4.1 Qi-Streicher Formula
In the Majorana-SYK theory acting with a fermion operator ψ at time u = 0 creates a
particle at rest at the boundary, which subsequently falls into the throat. The Heisenberg
operator ψ(u) initially has size 1. The size grows with time, but the energy is conserved.
This is the process described below by the Qi-Streicher formula (4.2). The energy of such
an initial size-1 particle is what we have been calling H in equations like (3.13).

As we will discuss in section 5 the momentum-size correspondence can be expressed in
the form [5,6],

P =
dC
du

(4.1)

where C(t) is the size of the operator ψ(t).
Qi and Streicher [9] have calculated the size of ψ(u) in Majorana-SYK to be,

C(u) = 1 + 2

(
βJ
π

sinh (πu/β)

)2

. (4.2)

From (4.1) and (4.2) we find that in the throat,

P = 4J 2u, (4.3)

and the force which is defined as dP/du is given by the constant value,

F = 4J 2. (4.4)

From (3.13) and (4.4) we obtain the following expression for H,

H = 4µJ 2. (4.5)

To determine µ in terms of SYK parameters we turn to black hole thermodynamics and
compare the specific heat of a near-extremal black hole with that of the SYK model.

4.2 Specific Heat at T=0: Relating µ and J
We would like to express µ in terms of the SYK parameters N,J , q. To do so we will equate
the zero-temperature specific heat of the JT gravity solution with the corresponding SYK
result. We begin with the dilaton which plays the role of area in JT. The dilaton has a
constant background part Φ0 and a varying part ϕ.

The dilaton profile ϕ(σ) is determined by solving the equation of motion and setting the
boundary value to a fixed constant of order Φ0. The precise value is not important but for
convenience we will choose,

ϕb =
Φ0

log 2
. (4.6)

One finds
ϕ(σ) =

2Φ0

log 2

πµ

β
coshσ/µ. (4.7)

The extremal entropy is given by
S0 =

Φ0

4G
.
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For large q it has the value 1
2N log 2. Thus,

Φ0

2G
= N log 2. (4.8)

The near-extremal entropy is given by 1/4G times the dilaton at the horizon which from
(4.7) is,

S =
Φ

4G
=

Φ0

4G
+ T

Φ0πµ

2 log 2 G
(4.9)

where T = 1/β.

Using (4.8),
dS

dT
= πµN. (4.10)

To determine µ we use the SYK value for dS/dT. In the large q limit the SYK value has
been calculated analytically [11],

(dS/dT )SYK =
π2N

q2J
. (4.11)

Equating (4.10) and (4.11),

µ =
π

q2J
, (4.12)

for large q.
Finally, having obtained µ in terms of SYK parameters, we may go back to (4.5) and

obtain H,

H = 4π
J
q2
. (4.13)

4.3 Mass of the Boundary
We have treated the boundary as if it were frozen at σ = σb with σb given by (2.12). To
put it another way, we have treated the boundary as if it has infinite mass. In practice that
is a good approximation, but in fact the boundary is a dynamical object which can recoil
and move when a force is applied to it. For example, when a particle is dropped in from
the boundary the boundary will recoil so that its momentum will be equal and opposite to
the momentum of the particle [5]. However, the boundary itself behaves as a very heavy
non-relativistic particle whose mass is,

M =
N

µ
. (4.14)

Using (4.12) we may write,

M =
1

π
Nq2J . (4.15)

The fact that the boundary mass is orderN means that the recoil motion is usually negligible.
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4.4 Summary of Preliminaries
For q >> 1 the relation between the JT and SYK variables that we will need is given by,

µ =
π

q2J
, (a)

Φ0

2G
= N log 2, (b)

H = 4π
J
q2
, (c)

M =
1

π
Nq2J , (d)

F = 4J 2, (e) (4.16)

where in (4.16)(c,d) the quantites H and F refer to the energy and the force on a size-1
particle in the throat.

5 Operator Growth in Majorana-SYK
Qi and Streicher [9] have given a rigorous discussion of operator growth in SYK at low
temperature. In this paper we make no pretense of rigor. We rely on intuitive “epidemic”
arguments [12] which reproduce the results of [9] in the throat region and which are easy to
generalize to the charged case. The argument is best justified in the large q limit in which
1 << βJ << q2 << N. Later we will discuss the extrapolation to fixed but large q2 and
βJ >> q2.

During the passage through the throat which lasts for a boundary-time ∼ β the size and
complexity of an evolving simple operator are indistinguishable and we will use the same
symbol for both; namely C.

5.1 Exponential Growth in Circuit Time
At large q the evolution of a single fermion operator is described by diagrams of the form
shown in Figure 3. The diagram represents the “branching diffusion” pattern shared by SYK
and string theory. It is simplified so that it shows a uniform rate of branching with respect
to some yet-to-be-determined time variable τ. This is an simplification which is only correct
in an average sense but it’s good enough for our purposes. The time variable τ, which we
will call “circuit time” is not assumed to be the boundary time u or even linear3 in u.

Identifying the number of endpoints (leaves of the tree) as the size C of the growing
operator, the branching diffusion implies an exponential growth of size in τ . In the q-local
version of SYK a fermion will split into (q − 1) offspring. It is natural to write,

dC
dτ

= (q − 2)C.

However by redefining τ we may eliminate the factor (q − 2) and write,

dC
dτ

= C,

3The nonlinear relation between circuit and ordinary time was also necessary in the quantum-epidemic
model of Qi and Streicher in order to reproduce the results of their calculation of growth.
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Figure 3: Branching diffusion. The diagrams controlling the large q behavior of operator
growth in SYK are tree like. They grow exponentially with depth. The number of leaves of
the tree is proportional to the number of vertices. The tree-like behavior and exponential
growth break down at the scrambling time which only happens well after the particle has
left the Throat and passed through the Rindler region.

C(τ) = eτ . (5.1)

We have assumed C(0) = 1 in line with the fact that the initial fermion operator in the
upcoming SYK calculation has size 1.

As remarked above, the circuit time τ is not the usual asymptotic time u, nor is it linear
in u. One might think that (5.1) has no content other than as a definition of τ but that’s
not true. The invariant fact expressed by Figure 3 and equation (5.1) is that the number
of leaves of the tree (the size) is proportional to the number of vertices. By analogy with
quantum circuits the number of vertices represents the growing complexity of ψ(t). This is
the basis for the claim that size and complexity are proportional to one another.

5.2 Why Circuit Time Slows Down
Let us digress for a moment to explain why the circuit time is not proportional to the time u
conjugate to the SYK Hamiltonian. Consider the energy carried by each line in the diagram
of Figure 3. An incoming energy ω will split at each vertex so that the average energy
carried by a line will decrease exponentially with τ. This naturally implies that the time ∆u
to the next vertex will grow exponentially with τ. In terms of the epidemic model it means
that the rate of contact between participants slows down in real time. This slowdown was
noted in [5] where the time between vertices ∆τ was denoted β̃. It was also commented on
in [9].

The proportionality of size and complexity can not go on forever. It and and the tree-
like nature of the evolution must break down at the scrambling time when the size becomes
comparable to the number of fermionic degrees of freedom, N . At that point the size
saturates but the complexity continues to grow linearly with u. But by this time the particle
has long passed through the throat and is in the Rindler region.

We will assume that boundary time u and circuit time τ are monotonically related,

u = u(τ), du/dτ > 0.
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Following [5] we define,
du

dτ
= β̃. (5.2)

The first of equations (5.1) takes the form

dC
du

du

dτ
= β̃

dC
du

= C. (5.3)

5.3 Momentum and Size
In [5] a specific form of the momentum-size correspondence was proposed,

β̃P = C. (5.4)

Combining (5.4) with (5.3) implies,

P =
dC
du
. (5.5)

Equations (5.4) and (5.5) are two forms of the momentum-size correspondence which in the
scaling region, i.e., the throat, are equivalent. Which of them is more fundamental is not
obvious but the version (5.5) was derived in a rigorous manner from the SL(2R) symmetry
of AdS(2). Moreover it holds not only through the throat but also through the scrambling
process in the Rindler region.

Note that one may start with (5.5) and reverse the argument to derive (5.4).

5.4 Boundary Time and Circuit Time
Let us consider the functional relation u(τ). One way to obtain it is to use the approximate
scale invariance of SYK at low temperature. It implies that C(u) should be a power of u.
Furthermore it should be time-symmetric and smooth at u = 0. The simplest dimensionally
consistent assumption is

C(u) = cJ 2u2, (5.6)

with c being a constant. Qi and Streicher [9] calculate that at large q the size grows according
to (4.2),

C(u) = 1 + 2

(
βJ
π

sinh (πu/β)

)2

≈ 2J 2u2. (u << β in throat) (5.7)

From (5.7) we read off that the constant in (5.6) is c = 2.
Next we note that

β̃ =
C

dC/du
,

so that
β̃ = u/2, (5.8)

and from du/dτ = β̃ we find,
u = J−1eτ/2. (5.9)

where the factor J−1 is necessary for dimensional consistency and to match (5.7).
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5.5 Momentum and Force
The conjectured momentum-size correspondence, if correct, would imply that the momentum
is given by,

P = dC/du = 4J 2u. (5.10)

This may be interpreted in terms of a constant force F acting on the particle,

F = dP/du = 4J 2. (5.11)

which agrees with (4.4).

5.6 Ladder Graphs
At this point we will digress very briefly to comment on the relation between the rate
equation (5.1) and the ladder-sum for four-point out-of-time-order-correlators. The diagrams
of Figure 3 represent amplitudes which need to be squared in order to give probabilities.
Accounting for the usual SYK disorder averaging the leading melon diagrams are like the one
in the left panel of Figure 4. In order to calculate the average size at a given time one needs
to count the number of fermionic lines in the intermediate state. This is done by inserting
the number operator4 [(ψi)L, (ψi)R] according to the prescription in [9]. Diagrammatically
it is denoted by the open gap on one of the intermediate lines. The open gap can be on any
of the intermediate lines and the sum over such diagrams represents the probability for a
given size.

In fact the symmetry of the diagram is such that the sum just gives a multiplicative
factor equal to the number of fermion lines.

The relation with four-point ladder diagrams is clear if we redraw the left panel in the
equivalent form in the right panel. The two diagrams are equivalent but the right panel has
been drawn to emphasize the ladder-like nature of the graphs.

One question that Figure 4 raises is why the lower rungs of the ladder have more internal
structure than the upper rungs. The answer is that in the model with uniform spacing of
vertices in τ the circuit time between the beginning and end of a rung is greatest at the
bottom of the ladder and grows smaller as we proceed up the ladder. The actual ladder
kernal is a sum of diagrams, but which diagram dominates depends on the time-interval
between where it connects with the rails.

From the ladder diagram point of view the exponential growth of the size is characteristic
of the graviton Regge trajectory.

6 Charged Particles in U(1)-invariant SYK
Now we turn to the main subject of the paper—operator growth and its relation to electric
forces in the U(1)-invariant version of the SYK model. The model has a global ungauged
conserved charge. Positive and negative charged fermions are coupled in a q-local manner.
The U(1) symmetry requires that each term in the Hamiltonian has q/2 fermions of each
sign. Schematically,

H =
∑

j....ψ
†
1...ψ

†
q
2
ψ1...ψ q

2
(6.1)

4The definition of the number operator that we use was given by Qi and Streicher [9]. The number
operator is defined on two copies of the N fermion system which are identified with the bra and ket sides of
the diagrams in Figure 3.
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Figure 4: Diagrams like Figure 3 represent amplitudes for a given number of fermions, in
this case n = 27. To construct probabilities the amplitude must be squared. In the left
diagram the gap in the uppermost line represents the counting of fermions at a fixed time.
The ladder diagram on the right is exactly the same diagram as on the left, but redrawn to
emphasize the ladder nature of the diagram.

with5

⟨j2⟩ = 2q−1J 2

q2Nq−1
(q/2)!2 (6.2)

and J is to be held fixed as N and q are varied.
The model we will use for studying operator growth is a simple variant of the perturbative

epidemic model [12] which is justified in the limit (1 << βJ << q2 << N.) Later we will
discuss its extrapolation to (1 << q2 << βJ << N.)

6.1 The Chemical Potential
The vertices governing the growth of size are shown in Figure 5. The diagrams in Figure 5
are to be read from left to right, the propagators being time-ordered.

To vary the charge of the black hole a chemical potential ν is introduced6 into the thermal
density matrix as an extra factor eν(n+−n−), where (n+ − n−) is the total fermion charge.
It’s effect is to modify the bare propagators connecting the vertices. A line labeled ± carries
a factor e∓ν as in Figure 5.

Let us see how these factors come about. The bare propagators are defined in the non-
interacting theory (J = 0) in which the different fermionic coordinates do not interact.

5The definition of J is the same as in Majorana-SYK except that the combinitorial factor q! in M-SYK
is replaced by (q/2)!2 in U(1)SY K.

6In our convention the chemical potential is dimensionless in contrast to the usual convention in which it
has units of energy.
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Figure 5: q = 8 “pitchfork diagrams” representing the basic unit of operator growth in the
U(1)-SYK model.The expressions under each vertex indicate its weighting.

Therefore it is sufficient to concentrate on a single complex fermionic degree of freedom. We
may think of the fermionic system in terms of Pauli matrices,

ψ† = σ+ = (σx + iσy)/2,

ψ = σ− = (σx − iσy)/2,

n = σz/2. (6.3)

The bare propagator is defined in terms of the non-interacting two-point function,

⟨ψ†ψ⟩ = 1

2
Tr ρψ†ψ, (6.4)

where the density matrix is
ρ = eνn = eνσz/2. (6.5)

One finds,

⟨ψ†ψ⟩ =
1

2
eν/2,

⟨ψψ†⟩ =
1

2
e−ν/2, (6.6)

⟨ψψ†⟩ =
1

2
e−ν/2,

⟨ψ†ψ⟩ =
1

2
eν/2, (6.7)
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Thus a line representing a positive fermion carries a factor eν/2

2 and a line representing a
negative fermion carries a factor e−ν/2

2 .

Figure 6: Splitting and redistributing eν . A propagator representing a positive fermion is
shown weighted by a factor e−ν in the left panel. In the right panel that same factor is
redistributed to the vertices connected by the propagator.

It is convenient to redistribute these factors by splitting each e±ν/2 into two factors
e±ν/4e±ν/4 and bringing them to the vertices as in Figure 6. when this is done each vertex
with an incoming ± line will be weighted with a factor e±ν/2. In addition the entire graph will
have an overall factor eν/2 which does not depend on the graph. The coupling J governing
the strength of each vertex is thereby “renormalized ” from J to e±ν/2J . This is indicated
in Figure 5.

The factors e±ν/2 occur in amplitudes—roughly speaking, the amplitude that the initial
fermionic perturbation evolves to a given number of positive and negative constituents—
but the rate equations in the next section are about probabilities. This means that in the
weighting of each graph the factors e±ν/2 must be squared to give a weight e±ν to each
vertex.

6.2 The Rate Equations
Equation (5.1) is the simplest possible rate equation that one can write down. In the case
of U(1)-SYK the equations are similar but more complicated since one has to keep track of
two species of fermions—those with positive charge and those with negative charge.

Define the partial sizes n± to be the average number of ± charged fermions in an operator.
The total size (n+ + n−) will again be denoted C. If the process is initiated by a ± charged
fermion operator, then the size after circuit time τ will be denoted by C(τ)±. Specifically
the size of ψ†(τ) is C(τ)+ and similarly the size of ψ(τ) is C(τ)−.

The rate equations for the tree-like graphs that dominate the large q model should have
several properties:
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1. They should be linear. Once a splitting has occurred the different branches do not
interact.

2. For reasons explained above, the splitting of a ± fermion should be weighted by a
probability e∓ν. This is indicated in Figure 5.

3. The equations should conserve the value of (n+ − n−). This is to insure charge con-
servation.

The most general rate equation with these properties is,

d

dτ

[
n+
n−

]
=

[
e−ν eν

e−ν eν

] [
n+
n−

]
(6.8)

The eigenvalues and eigenvectors7 of the matrix in (6.8) are,

λ1 = 0,

|λ1) =

[
eν

−e−ν

]
,

λ2 = 2 cosh ν,

|λ2) =

[
1
1

]
. (6.9)

We will be interested in solutions of the rate equations in which the initial state is either one
positive or one negative fermion. We denote these initial states by |ψ(0))±. By definition,

|ψ(0))+ =

[
1
0

]
,

|ψ(0))− =

[
0
1

]
, (6.10)

The solution of the rate equations with these initial conditions is,

|ψ(τ))± =
1

2 cosh ν

[
eτ∓ν + e±ν

eτ∓ν − e∓ν

]
=

[
n+
n−

]
±

(6.11)

and finally,
C± = n+ + n− =

1

2 cosh ν
(2eτ∓ν + e±ν − e∓ν). (6.12)

In general when we compare with the GR calculation the presence of a chemical potential
will back-react and influence the metric, but by working to lowest order in in ν back-reaction
can be ignored. Thus from now on we will work to linear order in ν,

C± = eτ (1∓ν)±ν. (6.13)

This is the total size for an initial state with one ± fermion.
Using (5.9) we find the sizes as a function of u,

C±(u) ≈ (1∓ ν)J 2u2 ± ν. (6.14)
7The ket-like notation here does not indicate a quantum state, but only the real column vector whose

entries are n+, n−.
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For J u > 1 the second term may be ignored compared to the first,

C±(u) ≈ (1∓ ν)J 2u2, (J u > 1). (6.15)

As an example consider the size of a positively charged operator C+ assuming the chemical
potential is positive. From (6.15) we see that the growth is slowed relative to the case with
ν = 0. Since with our convention a positive chemical potential will induce a positive charge,
the result implies that like-sign charges retard the operator growth. Similarly opposite
charge increases the growth rate. This of course is the holographic equivalent of like-signs
repel, unlike signs attract.

6.3 Relation to OTOCS and Regge Behavior
The time dependence of size is rigorously quantified by the evolution of the 4-point out-
of-order-correlator. In SYK these OTOCS are dominated by ladder diagrams which are
evaluated by iterating a ladder kernel. The ladders are described by Regge behavior with
Regge intercepts given in terms of the eigenvalues of the kernel.

The matrix in the rate equations (6.8) is a simplified version of this kernel. In the limit
ν → 0 the two eigenvalues in (6.9) are λ1 = 0 and λ2 = 1. The second is already present
in Majorana-SYK and corresponds to the graviton trajectory. The first is a new feature of
U(1)-SYK and corresponds to the photon trajectory.

6.4 The Evolution of Size for Charged Operators
In the large q2, fixed βJ limit the charge of the system and the chemical potential are
related by,

Q =
1

4
Nν. (6.16)

Equation (6.16) together with
M = q2JN, (6.17)

imply that equation (6.15) can be re-written in terms of the black hole mass and the integer-
valued U(1) generator Q.

C± ≈ J 2u2
(

M

JNq2
± 4Q

N

)
. (6.18)

Concerning equation (6.16), it is true in the weak coupling limit and therefore in the limit
q2 >> βJ . It may be derived in the free fermion limit. To see that consider the partition
function for a single free fermion mode,

Z = Treνn

= Treνσz/2

= 2 cosh ν/2 (6.19)

The charge Q to first order in ν is given by,

Q =
∂ logZ

∂ν

=
1

4
ν (6.20)
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Extending this to N fermionic modes gives (6.16).
Equation (6.16) is correct only correct for q2 >> βJ and must be significantly modified

in the more interesting limit of fixed q and very large βJ . We will discuss this in section 8.
By using the momentum-size correspondence we will compare (6.18) with a general

relativity calculation of the motion of charges in a NERN background. For the purpose of
that comparison we note that the momentum-size correspondence applied to (6.18) would
give,

P =
dC
du

≈ J 2u

(
M

JNq2
± 4Q

N

)
. (6.21)

6.5 Note on Charges
In equation (6.16) Q is not exactly the electric charge. Q is the difference (n+ − n−) which
we do expect to be proportional to the electric charge, but with a factor of proportionality
yet to be determined. Let us call the electric charge Q̃. It differs from the integer-valued
U(1) generator by a factor |e| representing the fundamental unit of charge,

Q̃ = |e|Q. (6.22)

7 Motion of Charged Particles
Returning to equations (3.12), the force on a charged particle in the throat is given by the
sum of two terms: a gravitational force FG and an electric force FE .

FG =
H

µ
+ eE(e−ρ/µ − 1),

FE = eEe−ρ/µ. (7.1)

As the particle moves away from the boundary (at ρ = 0) the electric term quickly becomes
negligible, so throughout most of the throat the force is constant and equal to,

F =
H

µ
− eE. (7.2)

The Energy H is conserved and may be evaluated at the start of the infall when the particle
is at rest at the black hole boundary. From (4.16)(c),

H = 4π
J
q2
. (7.3)

The electric field E is related to the electric charge of the black hole which we denote Q̃,

E = Q̃. (7.4)

The final form for the force on the charged particle in the throat is,

F = 4J 2 ± Q̃e. (7.5)

It follows that the momentum of an infalling charged fermion is given by,

P (u) = u
(
4J 2 ± Q̃e

)
. (7.6)
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7.1 A Puzzle
There is something puzzling about equations (3.7) and (3.8) (it puzzled me); namely the
presence of the term

∂rf

2
√
f
eAu,

in the expression for the gravitational force. Being proportional to the charge it would seem
to be part of the electric force, but that would be very odd since the usual expression for
electric force involves only the spatial derivative of Au. In fact the term,

e
∂Au

∂ρ
= −e∂Au

∂r

√
f,

was identified as the electric force in (3.11). It is also the term we dropped from (3.12) be-
cause it quickly becomes negligible as the particle moves away from the boundary. However,
it would be a mistake to ignore it altogether.

The resolution of the puzzle is the following: The particle initially experiences an electric
force −e∂ρAu as an impulse as it starts out at ρ = 0. The impulse, although short-lived,
affects the momentum and kinetic energy of the particle. By the time the particle has moved
a distance ∼ µ, depending on the relative sign of the particle and black hole, the electric
impulse will have resulted in the particle having greater or lesser energy than a corresponding
neutral particle. After the initial kick kinetic energy will be H + eAu.

On the other hand the gravitational force on the particle is proportional to its kinetic
energy, so depending on the sign of the charge, once the particle gets away from the boundary
the gravitational force will either be less than or greater than that of the corresponding
neutral particle. We see that the origin of the term proportional to (H+eAu) is gravitational.

That the electric force −e∂ρAu, decreases quickly compared to the gravitational force is
expected from Regge theory8.

7.2 Comparing SYK and GR
Now we come to the main point: the comparison of the forces and acceleration of charged
particles in the throat, and the growth of operator size in U(1)-SYK. From the general
relativity calculation (7.5) we conclude that the momentum P of an infalling charge is given
by (7.6),

P = u
(
4J 2 ± Q̃e

)
.

On the other hand let us return to the rate equations in section 6. The result was equation
(6.18) for the growth of size, and (assuming the momentum-size correspondence) (6.21) for
the growth of momentum. It is evident that (7.6) and (6.21) have similar form. Equating
them we find,

e2 =
4J 2

N
. (7.7)

Equation (7.7) is new information that fixes the fundamental unit electric charge, in other
words the charge of a fundamental U(1)-SYK fermion. The fact that it is order 1/N means
that electric forces are 1/N effects which may seem surprising. In the next section we will
see that this has a simple explanation.

8From the Regge-pole point of view, gravity corresponds to a trajectory with intercept 2 while electro-
magnetism corresponds to a trajectory with intercept 1. In the current context this implies a dominance of
gravitational force over electric force as the particle gains energy in the throat.
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7.3 SYK and KK
While (7.7) may seem surprising it is in fact entirely natural. What it suggests is that the
U(1)-SYK system is a realization of Kaluza-Klein theory with a compactification scale which
we might have guessed.

Let us add an additional compact KK direction so that the geometry becomes AdS(2)×
U(1), with the compact circle having radius Rk. The unit of electric charge in such a theory
would be given by,

e2 =
G

Φ0R2
k

. (7.8)

From (4.8) we see that
e2 ∼ 1

NR2
k

. (7.9)

Comparing this with (7.7) we find,
Rk ∼ 1/J . (7.10)

The scaling of Rk with 1/J is hardly surprising since J−1 is the only length scale that
appears in SYK. In principle Rk might have had some uncancelled N dependence, but that
did not happen. The lack of q dependence in Rk is also interesting. We may compare (7.10)
with (4.12),

Rk

µ
∼ q2. (7.11)

We see that Rk grows relative to the AdS(2) length scale as q increases. The significance of
this is not entirely clear and one might wonder if it is an artifact of weak coupling, not to
be trusted for fixed q and large βJ . In the next section9 evidence will be given that (7.11)
is robust in the strong coupling limit 1 << q2 << βJ .

7.4 Boundary Particle Formulation
The arguments of the previous sections were derived from the weak coupling limit in which
βJ is held fixed and q2 → ∞. Nevertheless I believe the results—in particular the scaling
of the KK radius (7.10)—may be extrapolated to the strong coupling limit in which q2 is
held fixed and βJ → ∞.

A method which is valid at strong coupling is the boundary particle description [10]. In
this section we will use the boundary particle description to compute Rk and see that it is
indeed given by (7.10).

In the Majorana case the boundary particle has a single degree of freedom, i.e., its proper
distance from the horizon. It moves nonrelativistically with a large mass, M = NJ q2 (see
(4.16)-d). In U(1)-SYK the particle has a second U(1) angular degree of freedom. The radial
direction is frozen by a potential but the angular direction is a zero-mode. The quantized
momentum conjugate to the angular coordinate is the integer-valued charge Q.

Because of the large mass of the boundary particle the Hamiltonian for the angular
motion is non-relativistic,

H = p2/2M = n2/2R2
kM. (7.12)

We consider the thermal ensemble,

ρ = e−βH−νn = e
− βn2

2MR2
k

−ν.n
(7.13)

9The argument of section 7.4 is due to Henry Lin and Geoff Penington.



Electric Forces in the Charged SYK Model 23

Completing the square and integrating over n gives a partition function,

Z = e
ν2R2

kM

2β . (7.14)

The charge Q is given by,

Q =
∂logZ

∂ν
= µ

R2
kM

2β

= νNq2R2
kJ /β (7.15)

In the weak coupling limit the charge and chemical potential are related by (6.16) but this
relation breaks down badly in the strong coupling limit. For βJ >> q2 the correct relation
[7] is,

Q =
νNq2

16βJ
. (7.16)

Equating these expressions for Q gives,

R2
k =

Nq2

8JM
,

and finally using (4.16)(d) we find the q and N dependences cancel,

Rk =

√
π

8

1

J
∼ 1

J
, (7.17)

in agreement with (7.10).
On the other hand the relation µ = π/(q2J ) (equation (4.12) in section 4.2) made no

use of weak coupling. Therefore the mismatch between the scaling of Rk and µ is not a
weak coupling artifact.

To reiterate, the scaling of the KK radius with either 1/J was derived in two ways: the
weak coupling method featuring rate equations, applicable for q2 >> βJ ; and the strong
coupling boundary particle method. This suggests that at least for some quantities it is
possible to calculate by first fixing βJ and going to large q2, followed by an extrapolation
to large but fixed q and much larger βJ .

8 Extrapolation to Strong Coupling
In this section we will speculate on why the weak coupling analysis used in most of this
paper gives results which are applicable for the strongly coupled limit 1 << q2 << βJ .

Let us consider the consequences of a hypothetical “renormalization” of the chemical
potential ν in which it is replaced by a renormalized value ν̄,

ν̄ = f(q, βJ )ν, (8.1)

with f being an arbitrary function of the dimensionless SYK parameters q and βJ . In
extrapolating from weak to strong coupling there is no reason why f(q, βJ ) should not
change a great deal.

There are two places, where the chemical potential enters into our analysis. The first
was in the rate equations (6.8) and the second was in equation relating chemical potential
and charge (6.16). The thing to note is that if ν were to be replaced by ν̄ in both places:

d

dτ

[
n+
n−

]
=

[
eν̄ e−ν̄

eν̄ e−ν̄

] [
n+
n−

]
(8.2)
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Q =
1

4
Nν̄, (8.3)

the final outcome would be unchanged. In particular the relations (7.7) and the relation
between the Kaluza-Klein radius and the SYK energy scale J (7.10) would be unchanged.

From (7.16) we see that the function f should be given by

f(q, βJ ) =
q2

4βJ
. (8.4)

in the strong coupling limit. The question is whether the same renormalization of ν would
correctly describe the strongly coupled rate equations in (8.2).

Let us first consider (8.3). The total charge is given by the equal-time two-point function,

Q = Tr iρ [ψ†
i , ψi ] = i⟨ψ†

iψi − hc⟩, (8.5)

with
ρ = e−βH+νn.

To first order in the chemical potential the total charge is proportional to

d⟨ψ†
iψi − hc⟩
dν

,

in other words,

ν̄ ∼ d⟨ψ†
iψi − hc⟩
dν

|u=0. (8.6)

Now consider the ν dependence of the rate equation, which originated from the dependence
of the propagators in Figure 6 on ν. In the weakly coupled limit those propagators had the
form given in (6.7) but they will be corrected by interactions. Assuming that the diagrams of
importance in the coupled theory are the same as those in the weak limit, but with corrected
propagators, then to first order in ν the rate equations in the interacting theory depend on

ν̄ ∼ d⟨ψ†
iψi − hc⟩
dν

.

The difference is that in the case of the rate equations the effective value of ν̄ depends on the
two-point functions over a range of time, not just at u = 0. It does however seem reasonable
that the renormalized values of ν̄ for the two purposes are approximately the same.

9 Conclusion
This paper studied the emergence of bulk electric forces in a holographic theory with a global
symmetry —namely the U(1)-SYK model. There main ingredients were:

1. The momentum-size correspondence that relates the momentum of an infalling particle
to the size of the operator that created the particle.

2. On the SYK side, a simple generalization of the epidemic model for operator growth
that described the evolution of size for charged operators in a background of non-zero
global U(1) charge.

3. A general relativity calculation of the time dependence of momentum of an infalling
charged particle in two-dimensional dilaton-Maxwell gravity.
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The agreement of the SYK and GR calculations requires a specific normalization for unit
of electric charge carried by the basic fermion operators ψ. That normalization agrees with
a Kaluza-Klein mechanism in which the KK compactification radius is equal to the inverse
energy scale of the SYK theory as in equation (7.10).

The epidemic model was based on weak coupling arguments and does not obviously
apply in the limit βJ >> q2 where the coupling is strong. Two arguments were given that
the weak coupling results could be extrapolated to strong coupling. The first was that by
using the strong coupling boundary particle formulation one finds the same result for the
KK scale, namely (7.10).

The second argument was that the main effect of strong coupling is to “renormalize” the
chemical potential. If the renormalization is the same in the two places where the chemical
potential occurs it will cancel out and reproduce (7.10) when βJ >> q2.

The charged epidemic model of section 6 is crude and a more technically precise version
of it would be helpful, especially in clarifying the extrapolation to strong coupling.

One last point seems worthy of mention. The gravitational effect on an infalling particle
is truly a bulk phenomenon in that the force is uniform throughout the throat. By contrast,
although the electric field is uniform, equation (3.12) shows that the electric force on a
charged particle is localized within a distance µ from the boundary. The difference is due
to the different energy dependence of the coupling to gravity and electromagnetism

Nevertheless, despite its localization near the boundary, the electric force leaves an im-
print on the kinetic energy and therefore affects the subsequent gravitational force on the
particle throughout the bulk.
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