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Message From the Damghan University President 

 

 

In the name of God 

Hello and welcome to the participants and speakers of the 4th International Conference on Holography and its 

Applications. 

With the aim of expanding and promoting science and also promoting of scientific and industrial progress, 

Damghan University has always sought to increase international interactions and has supported all kinds of 

effective activities in this direction. For this reason, in recent years, Damghan University has organized several 

international conferences in the fields of physics, mathematics, biology and industrial engineering. 

The first conference with the aim of gathering research and researchers in the field of holography in one 

collection was held on 2022, the second one on 2023, and the third one on 2024. 

We are so happy to witness this great event again after about 1 year and we hope to have a successful conference 

like the previous ones. In this conference, like the previous ones, brilliant physicists from Iran and around the 

world were present as speakers and participants. Today, this conference is supported by many associations and 

scientific institutions and domestic and foreign universities. 

Although this conference is also held virtually due to health issues, but there is an in-person part organized by 

Khazar university. 

In the end, I hope that attending this conference will be beneficial for all the participants, and I would also like 

to thank and appreciate the keynote speakers of this conference who will give speeches in this conference 

despite being very busy. 

 

Prof. Reza Pourgholi 

Damghan University President 
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Message From the Conference Chair ICHA4 2025 

 

Hello, I am Behnam Pourhassan, the conference chairman. Nice to see you here for the 4th time. Welcome all 

to the fourth International Conference on Holography and its Applications. 

Conference Organizers 

Fourth International Conference on Holography and its Applications, organized by Damghan University, the 

Canadian Quantum Research Center, and the Khazar University. 

Many thanks Prof. Shahin Mamedov and Khazar University for hosting this conference. 

We are excited to share that the conference proceedings and selected papers will be published by the Journal 

of Holography Applications in Physics (JHAP).  

JHAP is already indexed by Scopus as promised in last year.  

In this year we awarded the fourth JHAP Prize. Congratulations Dr. Prabir Rudra, winner of the fourth JHAP 

Prize. There is also another prize for the next issue.  

Damghan University consider also a big prize: 2025 Prizes for Letters on Holography 

Winners will be introduced tomorrow in closing session. 

• The conference program is available on the conference website: 

https://holography2025.du.ac.ir/en/ 

• This conference has two parts: Online and In-person talks. I hope to have fully in-person conference in 

future. 

• Our next goal is indexing the conference in Scopus. We have already obtained ISBN for the previous 

proceedings and we will also obtain an ISSN for the conference. 

This conference is a joint activity between the Damghan University and the Canadian Quantum Research 

Center So, at the first, we invite Scott Jacobsen administrative director of CQRC to give a talk, then we attend 

seminar which will begin with the Prof. Salvatore Capozziello . 

Prof. B. Pourhassan, 

Conference Chair ICHA4 2025, 
Damghan University, 

Iran 

https://holography2025.du.ac.ir/en/
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Message From the Academic Partner Administrative ICHA4 2025 

 

 

 

 

 

Please see the following links. 

 

Scott Jacobsen Message:  https://www.youtube.com/watch?v=seQ5RaJXwFU 
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Introduction to black hole thermodynamics 

Edward Witten 

School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA 

 

Abstract: I will explain the basics of black hole thermodynamics, which combines gravity, 

quantum mechanics, and thermodynamics in s fascinating way. 

 

 

 

 

 

 

 

 

References 

 

[1] Edward Witten, Eur.Phys.J.Plus 140 (5) 430 (2025)  

[2] S. W. Hawking, Commun. Math. Phys. 43, 199-220 (1975)  

[3] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970) 

 

 

 

Talk link: https://youtu.be/E5AcqO2rTfY 

Friday 19th September 2025 

https://youtu.be/E5AcqO2rTfY


3 
 

                   International Conference on Holography and its Applications ththe 4 of sProceeding 

 18 to 19 September, 2025, Khazar University, Baku, Azerbaijan.                                                                                     ICHA4(2025)102 

 

Observers in de Sitter Space  
Leonard Susskind 

Stanford Institute for Theoretical Physics, USA 

Department of Physics, Stanford University, Stanford, USA 

 

Abstract: I’ll discuss the importance of physical observers (or quantum reference frames ) 

in a holographic theory of de Sitter Space. 
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Doubly Holographic Quantum Black Holes 

Robert B. Mann 

University of Waterloo, Waterloo, Canada 

 

Abstract: Quantum black holes are exact solutions to a semi-classical gravitational theory that 

incorporates all orders of quantum field backreaction on spacetime. These black holes have a 

doubly holographic thermodynamic description relating bulk to brane and brane to boundary.  

If uncharged, they exhibit re-entrant phase transitions and critical exponents that differ from 

standard mean field theory. The presence of charge and rotation eliminates these 

phenomena, with the critical exponents the same as in mean-field theory.  

An energy scale (or mass gap) 𝑀𝑔𝑎𝑝 can be computed to identify regimes where quantum 

fluctuations of spacetime geometry are expected to become significant.  Their gyromagnetic 

ratio is a function of the backreaction, and approaches a constant in the limit backreaction 

effects are large.  This class of black holes respects quantum versions of the Penrose and 

reverse isoperimetric inequalities. Taken as a whole, such black holes provide an interesting 

new test bed for confronting gravitation with quantum physics. 

References 

 

[1] Robert B. Mann, Journal of Holography Applications in Physics 4 (1) 1-26 (2024).  

[2] D. Kastor, S. Ray, and J. Traschen, 

 Class. Quant. Grav. 26, 195011 (2009).   

[3] B. P. Dolan, Class. Quant. Grav. 28, 235017 (2011).  

[4] B. P. Dolan, Class. Quant. Grav. 28, 125020 (2011). 
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Avoiding singularities in Lorentzian-Euclidean black holes:  

The role of atemporality 

Salvatore Capozziello 

Napoli University, Italy 

 

Abstract: We investigate a Schwarzschild metric exhibiting a signature change across the 

event horizon, which gives rise to what we term a Lorentzian-Euclidean black hole. The 

resulting geometry is regularized employing the Hadamard partie finie technique, which 

allows us to prove that the metric represents a solution of vacuum Einstein equations. In this 

framework, we introduce the concept of atemporality as the dynamical mechanism 

responsible for the transition from a regime with a real-valued time variable to a new one 

featuring an imaginary time. We show that this mechanism prevents the occurrence of the 

singularity and discuss that, thanks to the regularized Kretschmann invariant, the 

atemporality can be considered as a characteristic feature of this black hole. 

References 

 

[1] Salvatore Capozziello, Silvia De Bianchi, Emmanuele Battista, Phys.Rev.D 109, 10, 104060 

(2024).  

[2] T. Dereli, M. Onder, and R. W. Tucker, Class. Quant. Grav. 10, 1425 (1993). 

[3] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983). 

[4] S. W. Hawking, R. Laflamme, and G. W. Lyons, Phys. Rev. D 47, 5342 (1993). 

[5] A. D. Linde, Lett. Nuovo Cim. 39, 401 (1984). 

[6] A. Vilenkin, Phys. Lett. B 117, 25 (1982). 

[7] A. Vilenkin, Phys. Rev. D 58, 067301 (1998). 
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Ghost Condensate Dark Energy with Sextic Dispersion Relation  

in de Sitter Spacetime 

Amjad Ashoorioon 

School of Physics, The Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 

 

 

Abstract: We study the ghost condensate (GC) with a sixth-order dispersion relation 𝜔2~𝑘6, 

within the effective field theory framework of dark energy. Unlike the GC with a quartic 

dispersion relation, we find that in the sextic case, the correction to the Newtonian potential 

depends explicitly on the space and time variations of the matter density. At very late times, 

the resulting modification exhibits oscillatory behavior at distances of order 𝑀𝑃𝑙 𝑀2⁄ , at the 

timescale 𝑀4 𝑀𝑃𝑙
3⁄ , where 𝑀2 corresponds to the scale of the ghost condensate. We analyze 

scalar and tensor perturbations in both FLRW and de Sitter backgrounds, and show that the 

gravitational potential receives non-trivial, scale-dependent modifications arising from the 

inclusion of higher-derivative operators in the effective action. In the FLRW background, we 

compute the effective gravitational constant 𝐺𝑒𝑓𝑓 and the gravitational slip parameter, 𝛾 in 

the sub-horizon limit 𝑘 𝑎⁄ ≫ 𝐻, revealing their explicit dependence on spatial scales.  

Additionally, we demonstrate that the speed of gravitational waves becomes frequency 

dependent, with significant deviations from luminal propagation arising at momenta near 

𝑀𝑃𝑙 √|𝜎1|⁄ , where 𝜎1 is the coefficient of the operator 𝛾𝑖𝑗∇𝑖𝐾𝑙𝑟∇𝑗𝐾
𝑙𝑟in the unitary gauge 

action. 

 

References 

 

[1] A. G. Riess, et al., Observational evidence from supernovae for an accelerating universe 

and a cosmological constant, Astron. J. 116 (1998) 1009–1038. arXiv:astro-ph/9805201, 

doi:10.1086/300499. 
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[3] N. Aghanim, et al., Planck 2018 results. I. Overview and the cosmological legacy of Planck, 

Astron. Astrophys. 641 (2020) A1. arXiv:1807.06205, doi:10.1051/0004-6361/201833880. 

[4] A. G. Riess, et al., A Comprehensive Measurement of the Local Value of the Hubble 

Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES 

Team, Astrophys. J. Lett. 934 (1) (2022) L7. arXiv:2112.04510, doi:10.3847/2041-8213/ ac5c5b 
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Generation and Applications of Structured Light Beams  

with Various Symmetries 

Saifollah Rasouli  

Institute for Advanced Studies in Basic Sciences, Iran 

 

 

Abstract: This talk presents the generation of diverse structured light beams through 

diffraction of plane waves by diffractive elements with both axial and non-axial symmetries. 

The resulting beams include symmetric, asymmetric, and elliptical radial carpet beams, as well 

as combined Bessel-like beams in both symmetric and elliptical forms. Symmetric radial 

carpet beams are produced by diffraction of plane waves from radial phase and amplitude 

gratings with sinusoidal and binary profiles, while fractional radial carpet beams are 

generated using gratings with a fractional number of spokes. Elliptical radial carpet beams 

emerge when plane waves diffract from the grating in uniaxial crystals. Furthermore, 

combining radial phase and amplitude structures yields combined Bessel-like beams, and 

applying elliptical modulation to the azimuthal periodicity of these structures produces 

elliptical combined Bessel-like beams. Another type, galaxy-like beams, exhibit multiple 

intensity spots that rotate around the optical axis during propagation, generated by plane-

wave diffraction from spiral–radial amplitude structures. 

All these beams exhibit key features such as acceleration, self-healing, low divergence, and 

self-amplification within their patterned core regions. These properties make them robust 

against atmospheric turbulence and suitable for free-space optical communications in 

turbulent media. Their two-dimensional (2D) array-like transverse intensity distribution in 

polar coordinates also enables multi-particle trapping, while variations in the transverse 

intensity patterns—arising from different spoke numbers in the generating gratings—provide 

opportunities for spatial-mode-based information transfer. Finally, the generation and 

multiplication of structured beams in Cartesian coordinates are discussed in both near- and 

far-field regimes. In the near field, forked and 2D amplitude gratings are employed in 
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conjunction with the Talbot effect, while in the far field, forked gratings and almost-periodic 

amplitude structures are used. 

 

References 
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262 (2021). 
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Entanglement islands and Page curve  

in the framework of Horndeski gravity 

Fabiano F. Santos 

Centro de Ciências Exatas, Naturais e Tecnológicas, UEMASUL, 65901-480, Imperatriz, MA, Brazil 

Departamento de Física, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil 

 

Abstract: We study entanglement islands and the Page curve in Horndeski gravity on a Karch-

Randall braneworld. Analyzing the holographic boundary conformal field theory, we find that 

Horndeski parameters significantly modify the Page curve due to the geometry induced by 

the Horndeski scalar field. Notably, the geometry far from the AdS limit plays a key role, 

highlighting how Horndeski gravity impacts quantum information distribution. Additionally, 

holographic consistency offers a way to constrain Horndeski gravity, providing a tool to test 

modified gravity theories. 

 

References 
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[erratum: Commun. Math. Phys. 46, 206 (1976)]. 
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(2016) [arXiv:1402.5674 [hep-th]]; (Addendum) ibid. 44-48 [arXiv:1403.5695 [hep-th]]. 
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Renormalization of QFT in USR inflation: Recent developments 

Haidar SheikhAhmadi 

School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 

Center for Space Research, North-West University, Potchefstroom, South Africa 

 

Abstract: In this talk, I will review recent contradictions in QFT contributions to Ultra-Slow-

Roll inflation models. After renormalizing the infinities and applying effective field theory, I 

will show that the 1-loop corrections persist without cancellation. 
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Dunkl Black Holes with Phantom Global Monopoles:  

Geodesic Analysis and Thermodynamic Properties 

İzzet Sakallı 

Physics Department, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin 10, 

Turkey 

 

Abstract: We present a comprehensive analysis of static spherically symmetric black hole 

solutions within the framework of Dunkl geometry, incorporating the effects of both ordinary 

and phantom global monopoles. This work extends classical black hole physics by introducing 

topological defects and modified symmetry structures via Dunkl operators, which exhibit 

exotic repulsive gravitational effects in the presence of phantom global monopoles. 

Our investigation focuses on null geodesics with particular emphasis on photon dynamics, 

trajectory behavior, and circular photon orbits near these modified black holes. We analyze 

the stability properties through effective potential analysis and examine how the Dunkl 

parameter and phantom global monopoles significantly alter light propagation characteristics 

compared to classical solutions such as the Schwarzschild black hole. 

The thermodynamic analysis reveals substantial deviations in key quantities including 

Hawking temperature, entropy, Gibbs free energy, and specific heat. We demonstrate how 

these modifications provide valuable insights into thermal behavior and phase transitions in 

the context of Dunkl geometry. Additionally, we investigate the formation and characteristics 

of black hole shadows in this spacetime, showing that the inclusion of Dunkl symmetry and 

phantom global monopoles leads to profound modifications in both the physical and 

geometric properties of the black hole. 

Our findings highlight the significant role of the Dunkl parameter in modifying spacetime 

geometry and suggest potential observational signatures that could distinguish these exotic 

black holes from their classical counterparts. This research contributes to the growing field of 

modified gravity theories and their implications for black hole physics and cosmology. 
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The modular Dirac equation and cryptography 

Christina Rugina 
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Department of Physics, University of Bucharest, Bucharest, Romania  

 

Abstract: The modular flow on the boundary of an AdS_2 spacetime ensures that the 

entanglement wedge and the causal wedge coincide. We previously proposed that we can 

effectively 'see' at the center of the bulk with the help of the modular Dirac equation, so we 

now go ahead and predict the fact that the entire bulk is actually computable by a quantum 

computer that can 'see' behind the horizon if a proper cryptographic key is available and that 

such a key is linked to the existence of the AdS_2 SL(2) generators found by Lin, Maldacena 

and Zhao in 2019. 
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Abstract. In this paper, we obtain Rotating magnetic brane solutions of quasi-topological gravity in the 

presence of exponential nonlinear electrodynamic with one or more rotation parameters. For the rotating 

brane, the brane has a net electric charge, when one or more rotation is non zero. These solutions are 

horizonless and have no curvature, but there is a conic singularity with a deficit angle δ. Finally, we 

analyze the behaviors of the solutions function for the various parameters. 

 

 

1 Introduction 

 

Since, many systems in nature that include equations of gravitational systems are inherently nonlinear, 

in recent years, there has been a great deal of motivation to conduct studies related to quasi-topological 

gravity and nonlinear electrodynamics. We can name exponential [1] as the type of nonlinear 

electrodynamics theory, which are defined as 

𝐿𝑒𝑥𝑝(𝐹) = 4𝛽2 (𝑒𝑥𝑝 (
−𝐹2

4𝛽2) − 1)                                                                                                           (1) 

𝐹2 = 𝐹𝜇𝜈𝐹𝜇𝜈                                                                                                                                           (2) 

𝛽 is the nonlinear parameter with dimension of mass and 𝐹 = 𝐹𝜇𝜈𝐹𝜇𝜈, where 𝐹𝜇𝜈 is the electromagnetic 

field tensor that is defined as 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 and𝐴𝜇 is the vector potential. On the other hand, this 

Lagrangian reduce to the linear Maxwell Lagrangian as 𝛽 → ∞. Like the Born - Infeld theory, 

exponential nonlinear electrodynamics theory eliminates the infinity of the electric field [2, 3], while the 

exponential form is unable to do, but this theory causes a weaker singularity than the one in Einstein-

Maxwell theory [4]. The exponential form cannot cancel this infinity, but it causes a weaker singularity 

than the one in Einstein-Maxwell theory [5]. Also, magnetic branes are attractive because their solutions 

are horizonless and have a conical geometry. Now, we have a decision to take a further step and study 

the solutions magnetic branes with exponential nonlinear electrodynamic in quartic quasitopological 

gravity. In this paper, we begin with the metric of a horizonless spacetime and an action including 

nonlinear electrodynamic and quartic quasitopological theories. Then, we obtain equations and solutions  

and also, we investigate physical structure and behavior of the obtained solutions. At last, we write a 

brief result of the obtained data from this magnetic brane. 
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2 Rotating Metric and Solutions 

 

We want to abtain the solutions with no horizons. Therefore, we start with a metric with characteristics 

(𝑔𝜌𝜌)
−1

∝ 𝑔𝜙𝜙 and 𝑔𝑡𝑡 ∝ −𝜌2 instead of (𝑔𝜌𝜌)
−1

∝ 𝑔𝑡𝑡 and 𝑔𝜙𝜙 ∝ −𝜌2. So, we will work with the 

following rotating metric 

𝑑𝑠2 = [−
𝜌2

𝑙2
𝛯2 + 𝑔(𝜌)𝛯2 − 𝑔(𝜌)] 𝑑𝑡2 + 2 [

𝜌2

𝑙
𝛯√𝛯2 − 1 − 𝑙𝑔(𝜌)𝛯√𝛯2 − 1] 𝑑𝑡𝑑𝜙 +     

1

𝑓(𝜌)
𝑑𝜌2 +

[−𝜌2𝛯2 + 𝜌2 + 𝑙2𝑔(𝜌)𝛯2]𝑑𝜙2 +
𝜌2

𝑙2
𝑑𝑋2                                                                                              (3) 

where 𝑙  is a scale factor that is related to the cosmological constant 𝛬 . 𝑑𝑋2 = ∑ is𝑛−2
𝑖=1  a (n − 2) -

dimensional hypersurface with the form of a Euclidean metric in volume 𝑉𝑛−2 . 𝜌  and 𝜙  are, 

respectively, the radial and angular coordinates at which 𝜙 is dimensionless and has the range0 ≤ 𝜙 ≤
2𝜋 . The action of quartic quasi-topological in (𝑛 + 1) -dimensions in the presence of nonlinear 

electrodynamic theory is 

𝐼𝐺 = ∫ 𝑑𝑛+1√−𝑔[−2𝛬 + ℒ1 + 𝜆̂ℒ2 + 𝜇̂ℒ3 + 𝑐̂ℒ4 + 𝐿(𝐹)]                                                                          (4) 

Where 𝑔 is the determinant of the metric (3) and 𝛬 = −
𝑛(𝑛−1)

2𝑙2 . Just the Einstein-Hilbert lagrangian, 

second order Lovelock or Gauss-Bonnet lagrangian, cubic and quartic quasi topological Lagrangians are 

respectively defined as 

ℒ1 = R                                                                                                                                                    (5) 

ℒ2 = 𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 − 4𝑅𝑎𝑏𝑅𝑎𝑏 + 𝑅2                                                                                                       (6) 

ℒ3 = 𝑅𝑎𝑏
𝑐𝑑𝑅𝑐𝑑

𝑒𝑓
𝑅𝑒𝑓

𝑎𝑏 +
1

(2𝑛−1)(𝑛−3)

3(3𝑛−5)

8
𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑𝑅 − 3(𝑛 − 1)𝑅𝑎𝑏𝑐𝑑𝑅𝑒

𝑎𝑏𝑐𝑅𝑑𝑒 + 3(𝑛 +

1)𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑅𝑏𝑑 + 6(𝑛 − 1)𝑅𝑎
𝑏𝑅𝑏

𝑐𝑅𝑐
𝑎 −

3(3𝑛−1)

2
𝑅𝑎

𝑏𝑅𝑏
𝑎𝑅 +

3(𝑛+1)

8
𝑅3                                                     (7) 

ℒ4 = 𝑐1𝑅𝑎𝑏𝑐𝑑𝑅𝑐𝑑𝑒𝑓𝑅𝑒𝑓
ℎ𝑔

𝑅ℎ𝑔
𝑎𝑏 + 𝑐2𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑𝑅𝑒𝑓𝑅𝑒𝑓 + 𝑐3𝑅𝑅𝑎𝑏𝑅𝑎𝑐𝑅𝑐

𝑏+𝑐4(𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑)2 +

𝑐5𝑅𝑎𝑏𝑅𝑎𝑐𝑅𝑐𝑑𝑅𝑑𝑏+𝑐6𝑅𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑅𝑑𝑏 + 𝑐7𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑅𝑏𝑒𝑅𝑒
𝑑 + 𝑐8𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑒𝑓𝑅𝑒

𝑏𝑅𝑓
𝑑 +

𝑐9𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑅𝑒𝑓𝑅𝑏𝑒𝑑𝑓 + 𝑐10𝑅4 + 𝑐11𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑𝑅2 + 𝑐12𝑅𝑎𝑏𝑅𝑎𝑏𝑅2 + 𝑐13𝑅𝑎𝑏𝑐𝑑𝑅𝑐𝑏𝑒𝑓𝑅𝑒𝑓 𝑔
𝑐 𝑅𝑑𝑔 +

𝑐14𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑐𝑒𝑓𝑅𝑔𝑒ℎ𝑓𝑅𝑔𝑏ℎ𝑑                                                                                                                     (8)     

where                                                     

c1 = −(n − 1)(n7 − 3n6 − 29n5 + 170n4 − 349n3 + 348n2 − 180n + 36) 

c2 = −4(n − 3)(2n6 − 20n5 + 65n4 − 81n3 + 13n2 + 45n − 18) 

c3 = −64(n − 1)(3n2 − 8n + 3)(n2 − 3n + 3) 
c4 = −(n8 − 6n7 + 12n6 − 22n5 + 114n4 − 345n3 + 468n2 − 270n + 54) 

c5 = 16(n − 1)(10n4 − 51n3 + 93n2 − 72n + 18) 

c6 = 32(n − 1)2(n − 3)2(3n2 − 8n + 3) 

c7 = 64(n − 2)(n − 1)2(4n3 − 18n2 + 27n − 9) 

c8 = −96(n − 1)(n − 2)(2n4 − 7n3 + 4n2 + 6n − 3) 

c9 = 16(n − 1)3(2n4 − 26n3 + 93n2 − 117n + 36) 

c10 = n5 − 31n4 + 168n3 − 360n2 + 330n − 90 

c11 = 2(6n6 − 67n5 + 311n4 − 742n3 + 936n2 − 576n + 126) 

c12 = 8(7n5 − 47n4 + 121n3 − 141n2 + 63n − 9) 

c13 = 16n(n − 1)(n − 2)(n − 3)(3n2 − 8n + 3) 

c14 = 8(n − 1)(n7 − 4n6 − 15n5 + 122n4 − 287n3 + 297n2 − 126n + 18)                                       (9) 
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𝜆̂, 𝜇̂ and 𝑐̂ are respectively the parameters of Gauss-Bonnet, cubic and quartic quasi-  topological 

Lagrangians. Actually, these parameters are arbitrary coupling constants, and  rescaling is done to 

simplify the field equations. So, gives [6, 7] 

𝜆̂ =
𝜆𝑙2

(𝑛−2)(𝑛−3)
                                                                                                                                       (10) 

𝜇̂ =
7(2𝑛−1)𝑙4𝜇

(𝑛−2)(𝑛−5)(3𝑛2−9𝑛+4)
                                                                                                                       (11) 

𝑐̂ =
𝑐𝑙6

𝑛(𝑛−1)(𝑛−3)(𝑛−7)(𝑛−2)2(𝑛5−15𝑛4+72𝑛3−156𝑛2+150𝑛−42)
                                                                     (12) 

For the static magnetic brane, the vector potential has only one component 𝐴𝜙, while for the rotating 

magnetic brane, add angular momentum to the spacetime. So, in this class, the vector potential includes 

two components 𝐴𝜙 and 𝐴𝑡. Therefore, the vector potential for the rotating solutions as 

𝐴𝜇 = ℎ(𝜌)(
√Ξ2−1

𝑙
𝛿𝜇

𝑡 − Ξ𝛿𝜇
𝜙

)                                                                                                                (13) 

Using the above relations in action (4) and integrating by parts, we can get the action 

𝑆 =
(𝑛−1)

16𝜋𝑙2 ∫ 𝑑𝑛𝑥 ∫ 𝑑𝜌𝑁(𝜌) [[𝜌𝑛(1 + 𝜓 + 𝜆𝜓2 + 𝜇𝜓3 + 𝑐𝜓4)]′ +
4𝛽2𝑙2𝜌𝑛−1 

𝑛−1
[𝑒𝑥𝑝 (−

ℎ′2

2𝛽2𝑙2𝑁2(𝜌)
) − 1]]       (14)  

where 𝑔(𝜌) = 𝑁(𝜌)2𝑓(𝜌), 𝜓(𝜌) = −𝑙2𝜌−2𝑓(𝜌) and prime represents the first derivative with respect 

to 𝜌. Varying this action with respect to 𝜓(𝜌) yields 

[1 + 2𝜆𝜓(𝜌) + 3𝜇𝜓2(𝜌) + 4𝑐𝜓3(𝜌)]𝑁  ′(𝜌) = 0                                                                               (15) 

The above equation shows that 𝑁(𝜌) must be a constant value, which we choose 𝑁(𝜌) = 1. Varying the 

action (14) with respect to 𝑁(𝜌) and ℎ(𝜌) and substituting 𝑁(𝜌)=1 (or 𝑔(𝜌) = 𝑓(𝜌)) yields 

[(𝑛 − 1)𝜌𝑛((1 + 𝜓 + 𝜆𝜓2 + 𝜇𝜓3 + 𝑐𝜓4)]′ + 𝜌𝑛−1(𝑙2𝛽2 + ℎ′2
) 𝑒𝑥𝑝 (−

ℎ′2

2𝑙2𝛽2
) − 4𝑙2𝛽2 𝜌𝑛−1 = 0          

(16) (𝜌𝑛−1ℎ′ exp (−
h′2

2𝑙2𝛽2
)  )

′

= 0                                                                                                      (17) 

If we solve Eq. (17), we get the electromagnetic field 

𝐹𝜙𝜌 = Ξℎ′ = Ξ𝑙𝛽√−𝐿𝑤(−𝜂)                                                                                                              (18) 

and 

𝐹𝑡𝜌 =
√Ξ2−1

𝑙Ξ
𝐹𝜙𝜌 = Ξℎ′ = −𝑙𝛽

√Ξ2−1

𝑙
√−𝐿𝑤(−𝜂)                                                                               (19) 

where 𝜂 =
𝑞2𝑙2𝑛−6

𝛽2𝜌2𝑛−2
 and 𝑞 is the constant of integration. 𝐿𝑤 is the Lambert function. 

We get to the relation 𝐹𝜙𝜌 = −𝜕𝜌𝐴𝜙 and 𝐹𝑡𝜌 = −𝜕𝜌𝐴𝑡. 

𝐴𝜙 = −Ξ
𝑛−1

𝑛−2
𝑙𝛽 (

𝑙𝑛−3𝑞

𝛽
)

1

𝑛−1
(−𝐿𝑤(−𝜂))

𝑛−2

2(𝑛−1) × {2𝐹1  ([
𝑛−2

2(𝑛−1)
] , [

3𝑛−4

2(𝑛−1)
] , −

1

2(𝑛−1)
𝐿𝑤(−𝜂))       (20) 

Using equation (18) in equation 16 leads to the relation 

𝑐𝜓4 + 𝜇𝜓3 + 𝜆𝜓2 + 𝜓 + 𝑘 = 0                                                                                                          (21) 

where 𝑘 is 
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𝑘 = 1 −
𝑀

(𝑛−1)𝜌𝑛
+ −

4𝑙2𝛽2

𝑛(𝑛−1)
−

4(𝑛−1)𝑞𝛽𝑙𝑛−1

𝑛(𝑛−2)𝜌𝑛
(

𝑙𝑛−3𝑞

𝛽
)

1

𝑛−1
(−𝐿𝑤(−𝜂))

𝑛−2

2(𝑛−1) ×

2𝐹1  ([
𝑛−2

2(𝑛−1)
] , [

3𝑛−4

2(𝑛−1)
] , −

1

2(𝑛−1)
𝐿𝑤(−𝜂)) +

4𝛽𝑞𝑙𝑛−1

(𝑛−1)𝜌𝑛−1
 (−𝐿𝑤(−𝜂))

1

2 × [1 +
1

𝑛
(−𝐿𝑤(−𝜂))−1]      (22) 

and 𝑀 is the integration constant and is related to the mass of this magnetic brane. In the above solution, 

we have used the following relation for the Lambert function: 

𝐿𝑤(𝑥)𝑒𝐿𝑤(𝑥) = 𝑥                                                                                                                                  (23) 

Finally, the solution 𝑓(𝜌) for Eq. (21) is obtained as 

𝑓(𝜌) = −
𝜌2

𝑙2
(−

𝜇

4𝑐
+

±𝑠𝑊∓𝑡  √−(3𝛼+2𝑦±𝑠
2𝛽

𝑊
)

2
)                                                                                         (24) 

In the above equation, two ±𝑠 should both have the same sign, while the sign of ∓𝑡 is independent. It is 

noteworthy to say that in order to have the cubic quasi-topological or Gauss-Bonnet solutions we should 

replace 𝜇 = 0 or 𝜆 = 0 in Eq. (21) and not find the solutions in the above relations because we get vague 

values [6,8,9]. 

 

3 Physical Properties of The Solutions  

 

In this section, we aim to investigate the geometric and physical properties of the solutions like horizons, 

singularity, and behaviors of the function 𝑓(𝜌). As we know, to find the horizons of the obtained 

solutions, the condition 𝑓(𝑟+) = 0 should be satisfied where 𝑟+ is the horizon. Suppose that 𝑟+ is the 

largest real root of 𝑓(𝜌) = 0, which leads to the function 𝑓(𝜌) being positive for 𝜌 > 𝑟+and negative for 

𝜌 < 𝑟+. The range 0 < 𝜌 < 𝑟+ is not acceptable as 𝑔𝜌𝜌 cannot be negative (which occurs for 𝜌 < 𝑟+, 

because of the change of signature of the metric from (𝑛 − 1) + to (𝑛 − 2) +. Therefore, we delete this 

unacceptable range 0 < 𝜌 < 𝑟+, and so the function 𝑓(𝜌) is limited to the acceptable range 𝜌 > 𝑟+. For 

ease, we can use the suitable transformation 

r2 = ρ2 − r+
2                                                                                                                                          (25) 

 

 
Figure 1. 𝑓(𝜌) versus 𝜌 with 𝑀 = 5, 𝛽 = 10, 𝑛 = 4, 𝜆 = −0/01, 𝜇 = 0.4, and 𝑐 = −0.01. 

 

In Fig. 1, 𝑓(𝜌) versus 𝜌  for different values of 𝑞  and for Exponential nonlinear electrodynamic is 

plotted. As mentioned, there is a 𝑟+ which 𝑓(𝜌) < 0 for 𝜌 < 𝑟+ and unacceptable. Also, for constant 

values of parameters 𝑀, 𝛽, 𝑛, 𝜆, 𝜇 and 𝑐, when we increase the value of 𝑞, the value of 𝑟+ increases. The 

function 𝑓 has a constant value for each value of 𝜌, but in the region near 𝑟+, as 𝑞 increases it decreases. 
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Figure 2. 𝛿𝜙 versus 𝑟+ with 𝛽 = 10 and 𝑛 = 4. 

 

In Fig. 3, for different values of 𝑞, there is a minimum value for 𝑟+ that 𝛿𝜙 is real only for 𝑟+ > 𝑟+𝑚𝑖𝑛 

and the same way for 𝑟+ > 𝑟+𝑚𝑎𝑥, 𝛿𝜙 is independent of 𝑞 and has a constant value for each value of 𝑟+. 

While in the range of 𝑟+𝑚𝑖𝑛 < 𝑟+ < 𝑟+𝑚𝑎𝑥, 𝛿𝜙 depends on the value of 𝑞 and as 𝑞 increases it increases.  

 

4 Concluding Results 

 

In this paper, we obtained magnetic solutions of quartic quasi-topological gravity in the presence of 

nonlinear electrodynamic exponential generated by a rotating magnetic brane. It should be noted that 

quasi-topological gravity is a higher derivative theory and has no limitations on dimensions. So, if we 

consider the parameters of quasi-topological gravity zero ( 𝜆 = 𝜇 = c = 0) this theory reduces to 

Einstein’s theory and also reduces to linear Maxwell field, if the nonlinearity parameter β goes to 

infinity. These solutions have no curvature singularity and no horizons, but have conical singularity with 

a deficit angle. The function 𝑓 is defined in the range 𝑟+ < 𝜌 < ∞ and does not contain the point 𝜌 = 0. 

In the continue, we analyze the behaviors of the function 𝑓 for the various parameters. 
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Abstract. The accelerating expansion of the universe remains one of the most profound 

discoveries in modern cosmology, motivating a wide class of dark energy models to explain it. 

Among these, the holographic dark energy (HDE) model, which is based on the holographic 

principle of quantum gravity, offers a fascinating framework for explaining cosmic acceleration 

in the late time. In this paper, we jointly analyze recent cosmological datasets, such as gamma-

ray burst distance indicators, cosmic chronometer (CC) measurements of the Hubble parameter, 

and Type Ia supernovae from the Pantheon sample, to present observational constraints on HDE 

models. We constrain the HDE parameters using Markov Chain Monte Carlo methods and a 

Bayesian statistical framework. Our findings show that late-time cosmic acceleration can still be 

explained by HDE models. These findings highlight how crucial holographic methods are for 

examining the nature of cosmic acceleration and dark energy. 
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Abstract. In this paper, we studied the Hubble parameter via the Brane models. In these models, 

the interaction of the Brane and Bulk causes an energy exchange between them. Here, we used the 

power-law potential as the initial dark energy. Our results show that the energy exchange and 

potential energies have the significant impact on the accelerated expansion of the universe in late 

time and Hubble tension. We then examined the cosmological parameters that represent slow-roll 

inflation. 

 
 

1 Introduction 

 

Modern cosmology is based on a fundamental principle: our universe is not only expanding, but this 

expansion is accelerating over time. This expansion is described by a quantity called the Hubble constant 

(𝐻0). The Hubble parameter tells us how fast the universe is expanding. For decades, scientists have had 

two main ways to calculate this constant: A. The direct method (local cosmology): This method relies 

on observing “nearby” objects such as Cepheid variables and type Ia supernovae in neighboring galaxies. 

By measuring their speed of receding (via the galactic redshift), the Hubble parameter is calculated 

directly. B. The indirect method (early cosmology): This method looks back in time, to just 380,000 

years after the Big Bang, rather than looking at the present-day universe. By carefully examining the 

cosmic microwave background (CMB), which is a fossilized map of the infant universe and recorded by 

satellites such as Planck, cosmological parameters can be extracted. Using the Standard Model of 

Cosmology (ΛCDM), which includes dark energy and cold dark matter, it is possible to predict what 

these parameters would ultimately lead to in the present-day universe. For years, it was expected that 

these two independent methods would arrive at a single value for the Hubble parameter. But this did not 

happen. This is precisely the starting point of the "Hubble tension." Various methods have been proposed 

to resolve this tension [1-3]. 

To explain this tension theoretically, we use Brane cosmological models. For the unification of general 

relativity (which describes the macroscopic universe) and quantum mechanics (which describes the 

world of subatomic particles), bold and revolutionary new theories have emerged. One of the most 

exciting and imaginative of these theories is brane cosmology. This theoretical framework has its roots 

in string theory, specifically M-theory, and proposes a fundamental and surprising idea. The three-

dimensional universe we inhabit is actually a multidimensional brane floating in a higher-dimensional, 

more expansive spacetime called the bulk. All particles and forces of the Standard Model (except 

gravity) are confined to the surface of this brane and cannot leak into higher dimensions. But gravity, 

unlike other forces, is not confined to the brane and can spread throughout the multidimensional bulk. 

By providing this new framework, brane cosmology offers innovative solutions to some of the deepest 

mysteries of cosmology, including the nature of dark energy and dark matter. In fact, these mysterious 
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phenomena could be related to the interaction of our universe with extra dimensions and cosmic 

inflation. The period of rapid exponential expansion of the universe in the first moments after the Big 

Bang was caused by the collision of our brane with another brane. As a result, brane cosmology is not 

just an abstract theory, but a bridge between particle physics and cosmology [4-7]. 

In this paper, we first introduce our action. Then we derive the Friedmann equations. The results indicate 

that energy is transferred between the bulk and the brane. Next, we calculate the cosmological 

parameters. These parameters fit well with the CMB data and indicate slow-roll inflation. Additionally, 

the examination of the Hubble parameter reveals an increase in late times, which supports its agreement 

with the Hubble tension and observational data. 

 

2 The Bulk-Brane Interaction  

 

The model we are considering features a 5-dimensional space-time bulk, where scalar fields 𝜙 are 

located, and a 4-dimensional brane, where material fields 𝜓 are situated. These two fields are coupled 

by  ℎ̃𝛼𝛽 = 𝐴2(𝜙)ℎ𝛼𝛽 [4-7], 

 

𝑆 =
1

2
∫ 𝑑5𝑠√−𝑔(𝑅 − 𝑔𝑎𝑏𝛻𝑎𝜙𝛻𝑏𝜙 − 2𝑉(𝜙)) + ∫ 𝑑4𝑠𝐿𝑚 (𝜓𝑚, 𝐴2(𝜙)ℎ𝛼𝛽)                                                    (1) 

 

Where 𝑔𝑎𝑏 is the space-time metric 5D and ℎ𝛼𝛽 is the space-time metric 4D, 

 

𝑑𝑆2 = 𝑔𝑎𝑏𝑑𝑥𝑎d𝑥𝑏 = ℎ𝛼𝛽𝑑𝑥𝛼d𝑥𝛽 + 𝛾2(𝑡, 𝑦)𝑑𝑦2                                                                                           (2) 

 

Here, we use the 5D FRW metric to study the cosmology of our model. 

 

𝑑𝑆2 = −𝑛2(𝑡, 𝑦)𝑑𝑡2 + 𝑎2(𝑡, 𝑦) [
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2)] + 𝛾2(𝑡, 𝑦)𝑑𝑦2                                            

(3) 

 

Where 𝑘 = 0, ±1.  By the calculus of variations, we can obtain the Einstein equations and by using the 

metric, the Friedmann equations of the model. Then, by combining the Friedmann equations, we have  

 

𝐻̇ + 𝐻2 =
1

12
 [

𝜁(1−3𝜔𝛾)𝜌𝛾

𝐻
− (𝜌𝜙 + 3𝑃𝜙)] −

1

36
𝜌𝛾

2 [
𝜁(1−3𝜔𝛾)

𝐻
+ 3𝜔𝛾 + 2] .                                                     (4) 

 

Where 𝐻 =
𝑎̇

𝑎
 , 𝜌𝜙 =

1

2
𝜙̇2 + 𝑉(𝜙) , 𝑃𝜙 =

1

2
𝜙̇2 − 𝑉(𝜙) , 𝜁 =

𝑑 ln 𝐴(𝜙)

𝑑𝜙
  , 𝜌𝛾 = −

6

𝑎𝛾
(

𝜕𝑎

𝜕𝑦
) , 𝜔𝛾 =

𝑃𝛾

𝜌𝛾
 . The 

above equation indicates that the standard model of cosmology is altered by the influence of the bulk 

scalar on the dynamics of the brane. The coupling of matter and scalar fields by the metric of the brane 

leads to an energy exchange between the bulk and the brane. This exchange of energy can play an 

important role in Hubble tension. On the other hand, the equation of scalar field 𝜙 on the brane is 

calculated as follows: if we consider 𝜔𝛾 = −1 and 𝛾̇ = 0 , we can obtain, 

 

𝜙̈ + 3𝐻𝜙̇ +
𝑑𝑉(𝜙)

𝑑𝜙
= 4𝜁𝜌𝛾     .                                                                                                                              (5) 

 

Also, the energy density of scalar field in the bulk and the energy density of matter field on the brane 

are calculated as follows, 

 

𝜌𝜙̇ + 3𝐻𝜌𝜙 + 3𝐻𝜔𝜙𝜌𝜙 = 4𝜁𝜙̇𝜌𝛾 ,                                                                                                                           (6) 
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𝜌𝛾̇ = −4𝜁𝜙̇𝜌𝛾   .                                                                                                                                                      (7) 

 

The other assumption is that brane energy density is the result of matter and vacuum energy 𝜌𝛾 =  𝜌𝑚 +

𝜌Λ, we have [5], 

 

 𝜌𝛬 = 𝜌𝛬0
𝑒−4𝜁𝜙   .                                                                                                                                                      (8) 

 

Also, the effective potential on the brane is 𝑉𝑒𝑓𝑓 = 𝑉 + 𝜌Λ. 

 

3 Inflation on the Brane 

 

In this section, we specifically study the Power-Low potential [1-3]. According to the results obtained 

in the previous section, we have, 

 

𝑉𝑒𝑓𝑓 = 𝑉0
𝜙2𝑛

2𝑛
+ 𝜌𝛬0

𝑒−4𝜁𝜙        .                                                                                                                                  (9) 

 

Here, we assume the coupling of the interaction between the bulk and the brane to be a function of the 

scalar field as 

 

𝜁 = 𝜙 .                                                                                                                                                                        (10) 

 

First, we plot the effective potential based on the scalar bulk field for (𝑛 = 1,2,3). 

 

       
Figure 1. Plot (𝑉𝑒𝑓𝑓, 𝜙) for 𝑛 = 1,2,3. 

Fig. 1 shows the variations of dark energy in terms of the bulk scalar field. In this representation, the 

minima of dark energy can rest in two potential wells. At 𝜙 ≤ −1, the energy is initially active and goes 

from fast-roll to slow-roll. It then reheats and at −1 < 𝜙 < 1 it slowly rolls to 𝜙 = 1 and reheats again. 

The bulk scalar field energy can also oscillate around 1 and -1 and decompose into Standard Model 

particles. In this paper, we consider slow rolling inflation to investigate the effect bulk-brane interactions 

on the Hubble tension. In this case, the rolling speed is 𝜙̇ =
−𝑉𝑒𝑓𝑓

′

3𝐻
. To examine it more precisely, we 

plot the rolling speed based on the block scalar field. 

𝜙̇ =
−𝑛21−𝑛𝜙2𝑛−1𝑉0+8𝑒−4𝜙2

𝜙𝜌𝛬0

3√𝑉0
6

2−𝑛𝜙2𝑛−
𝜌𝛬0

2

36
𝑒−8𝜙2

                                                                                                             (11) 
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Figure 2. Plot (𝜙̇, 𝜙) for 𝑛 = 1,2,3. 

According to Fig. 2 in negative scalar fields, the velocity is decreasing. We have an accelerating 

contraction at −∞ < 𝜙 < 0.4. Then the expansion velocity increases, and we have an accelerating 

expansion at −0.4 < 𝜙 < 0.4. Finally, it decreases again at 0.4 < 𝜙 < ∞. Now, we examine the 

cosmological parameters. First, we calculate the first and second parameters of slow rolling. Then we 

plot them in Fig. 3. In conditions 𝜀 < 1 and |𝜂| < 1, we have inflation. 

𝜀 =
1

2
(

𝑛21−𝑛𝜙2𝑛−1𝑉0−8𝑒−4𝜙2
𝜙𝜌𝛬0

2−𝑛𝜙2𝑛𝑉0−𝑒−4𝜙2
𝜌𝛬0

)2                                                                                                        (12) 

 

𝜂 =
(2𝑛−1)𝑛21−𝑛𝜙2𝑛−2𝑉0−8𝑒−4𝜙2

(8𝜙2−1)𝜌𝛬0

2−𝑛𝜙2𝑛𝑉0−𝑒−4𝜙2
𝜌𝛬0

                                                                                            (13) 

 

    
Figure 3. Plot (𝜀, 𝜙) and (𝜂, 𝜙) for 𝑛 = 1,2,3. 

 

In the following, we calculate two parameters, the spectral index (𝑛𝑠) and the tensor-to-scalar ratio (𝑟). 

According to the CMB data, these two parameters should be about 𝑛𝑠 ≈ 0.965 and 𝑟 < 0.036. 

 

r = 8(
𝑛21−𝑛𝜙2𝑛−1𝑉0−8𝑒−4𝜙2

𝜙𝜌𝛬0

2−𝑛𝜙2𝑛𝑉0−𝑒−4𝜙2
𝜌𝛬0

)2                                                                                                         (14) 

 

𝑛𝑠 = 1 +
(2𝑛−1)𝑛22−𝑛𝜙2𝑛−2𝑉0−16𝑒−4𝜙2

(8𝜙2−1)𝜌𝛬0

2−𝑛𝜙2𝑛𝑉0−𝑒−4𝜙2
𝜌𝛬0

− 3 (
𝑛21−𝑛𝜙2𝑛−1𝑉0−8𝑒−4𝜙2

𝜙𝜌𝛬0

2−𝑛𝜙2𝑛𝑉0−𝑒−4𝜙2
𝜌𝛬0

)

2

                             (15) 

 

Finally, we have calculated the values of these parameters for different cases (n = 1, 2, 3) and placed 

them in Table 1. 
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Table 1. The values of inflationary parameters. 

 𝜀 < 1 |𝜂| < 1 𝜀 𝜂 r 𝑛𝑠 ≈ 1 

n=1 -0.215 < 𝜙 < 0.213 0.293 < 𝜙 < 0.342 8.8 × 10−6 −0.0274 0.0014 0.945 

n=2 -0.177 < 𝜙 < 0.177 0.319 < 𝜙 < 0,361 4.1 × 10−6 −0.0338 6.6 × 10−5 0.932 

n=3 -0.177 < 𝜙 < 0.177 0.328 < 𝜙 < 0.372 7.2 × 10−7 −0.0427 1.1 × 10−5 0.914 

 

4 Anomaly Analysis 

In this section, we will examine the Hubble parameter. The Hubble expansion rate is proportional to 

the potential energy 𝐻2 ∝  𝑉(𝜑). Using equation (8), (9) and (10), the first Friedman equation of the 

model becomes 

𝐻2 =
𝑉0

6

𝜙2𝑛

2𝑛
+

𝜌𝛬0

36
𝑒−8𝜙2

                                                                                                                                      (16) 

Now, we plot 𝐻, Fig. 4. According to this figure, the Hubble parameter increases as the bulk scalar field 

increases. 

 
Figure 4. Plot (𝐻, 𝜙) for 𝑛 = 1,2,3. 

If we assume the bulk scalar field 𝜙  as  

𝜙 = −
𝛼

ln 𝑎
                  𝑎 =

1

1+𝑧
                                                                                                                               (17) 

where 𝑧 is the redshift, we can plot the Hubble parameter as a function of redshift in Fig. 5. The plot 

shows an increase in the Hubble parameter at the last time (z=1), which is in perfect agreement with the 

observational data.  

    
Last Time                                                                      

 

Figure 5. Plot (𝐻, 𝑧) for 𝑛 = 1,2,3 and 𝛼 = 1. 
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Now, we examine equation (9) again and plot the effective potential based on the variables of equation 

(17), where  we just replaced 𝑎 with  
𝑎

𝑎𝑖
 and 𝑎𝑖 is initial scale factor (after the Big Bang). This graph 

shows the decreasing trend of the potential (𝑈𝑒𝑓𝑓) with increasing scale factor. In this case, our solution 

provides a beautiful explanation of the Hubble tension (Fig. 6). 

 

    
 

Figure 6. Plot (𝑈𝑒𝑓𝑓 , 𝑧) for 𝑛 = 1,2,3 , 𝑉0 = 10 and 𝛼 = 1 . 

5 Conclusions 

 

We considered a brane universe where a 3+1D brane is contained within a 4+1D bulk. Then we write 

Friedmann's equations, and the results showed energy transfer between the bulk and the brane [5]. We 

also used a power-law potential for primordial dark energy. This potential could solve the Hubble 

tension [1-3]. The interaction energy, along with dark energy, well demonstrates the accelerating 

expansion of the universe. We also calculated the cosmological parameters and put them in Table 1. 

Our results predict slow-roll inflation and agree with the CMB data. Finally, by studying the Hubble 

parameter, considering 𝜙 = −𝛼 (ln 𝑎)−1, we can observe its increase in last time, indicating its 

agreement with observational data. 

 

References 

 

[1] Eleonora Di Valentino et al 2021 Class. Quantum Grav. 38 153001 

 

[2] Chudaykin A, Gorbunov D and Nedelko N 2020 JCAP 08 013 [arXiv:2004.13046] 

 

[3] Joudaki S et al. 2020 Astron. Astrophys. 638 L1 [arXiv:1906.09262] 

 

[4] Y. Bisabr, “Hubble tension in power-law f(R) gravity and generalized Brans-Dicke 

      theory,” Int. J. Mod. Phys. D (2025), [arXiv:2403.13303] 

[5] Y. Bisabr, F. Ahmadi, “Deflation of Vacuum Energy During Inflation Due to Bulk-Brane  

      Interaction,” JCAP 10 (2020) 050. 

[6] Y. Bisabr and F. Ahmadi, Phys. Lett .B 774, 671 (2017) 

[7] Y. Bisabr, “Chameleon Brans-Dicke cosmology,” Phys. Rev. D 86 (2012) 127503. 

 

 

 



30 
 

                            International Conference on Holography and its Applications ththe 4 of sProceeding 

 18 to 19 September, 2025, Khazar University, Baku, Azerbaijan.                                                                                     ICHA4(2025)304 

Full paper – Poster 

 
 

 

Exponential Corrected Thermodynamics of Massive Black Holes on the Brane 

 
Hoda Farahani1 
1School of Physics, Damghan University, Damghan, 3671641167, Iran 

Email: h.farahani@du.ac.ir 

 

Abstract. We investigate the thermodynamic properties of massive black holes on a two-

dimensional brane embedded in a three-dimensional bulk spacetime, focusing on exponential 

corrections to the black hole entropy. Using the doubly holographic braneworld framework, we 

analyze the black hole metric derived from BTZ geometry with backreacting branes. The system 

exhibits rich thermodynamic behavior where the black hole entropy receives non-perturbative 

exponential corrections of the form 𝑆𝑐 = 𝑆 + 𝛼𝑒−𝑆. We compute the temperature, entropy, and 

energy of the braneworld black holes and examine their modified thermodynamic properties. Our 

results demonstrate how quantum corrections fundamentally alter the thermodynamic stability and 

phase structure of these gravitational systems, providing new insights into the interplay between 

quantum effects and gravity in lower-dimensional models. 

 

1 Introduction 

The study of black hole thermodynamics has been a cornerstone of theoretical physics, providing crucial 

insights into the fundamental nature of gravity, quantum mechanics, and information theory. In recent 

years, doubly holographic models have emerged as powerful tools for understanding black hole physics, 

particularly in the context of the information paradox and the Page curve [1-3]. The AdS/CFT 

correspondence has revolutionized our understanding of quantum gravity by establishing a duality 

between gravitational theories in the bulk and conformal field theories on the boundary [4]. This 

holographic principle has been extended to include braneworld scenarios, where lower-dimensional 

gravitational systems emerge as effective theories on codimension-one surfaces embedded in higher-

dimensional spacetimes. Of particular interest are massive black holes in braneworld models, which 

exhibit novel thermodynamic properties not present in their higher-dimensional counterparts. These 

systems provide a controlled setting for investigating quantum corrections to black hole 

thermodynamics, including exponential corrections that arise from quantum fluctuations and non-

perturbative effects. The motivation for studying exponential corrections stems from various approaches 

to quantum gravity, including string theory and loop quantum gravity, which predict modifications to 

the Bekenstein-Hawking entropy formula. These corrections are particularly important near extremal 

limits and in regimes where quantum effects become significant. In this work, we investigate a specific 

class of exponential corrections to black hole entropy in the context of braneworld models. We focus on 

massive black holes that arise from BTZ geometries with backreacting branes, providing a concrete 

realization of quantum-corrected black hole thermodynamics. 

2 Black Hole Metric and Braneworld Setup 

We begin with the BTZ black hole metric in three-dimensional Anti-de Sitter space [5,6], 
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𝑑𝑠2 = − (
𝑟2

𝐿2 − 𝜇2)
𝐿2

𝑟2 𝑑𝑡2 + (
1

𝑟2

𝐿2−𝜇2
+

𝑘2

𝑟2

𝐿2+𝑘2𝜇2
) 𝑑𝑟2                                                                             (1) 

where 𝐿 is the AdS radius, 𝜇 is a parameter related to the black hole mass, 𝑟 is the boundary cylinder 

radius, and 𝑘 characterizes the brane tension through the relation, 

𝑘 = √
4𝜋𝐺𝑁𝐿𝑇0

1−16𝜋2𝐺𝑁
2𝐿2𝑇0

2                                                                                                                               (2) 

Here 𝐺𝑁 is Newton's constant and 𝑇0 is the brane tension. The brane extends across the Einstein-Rosen 

bridge, intersecting the asymptotic boundaries at 𝜙 = 0. The brane profile is determined by the Israel 

junction conditions and takes the form: 

sinh 𝜇𝜙 =
𝑘𝜇𝐿

𝑟
                                                                                                                                         (3) 

This profile ensures that the brane reaches the boundary at the specified locations while satisfying the 

appropriate junction conditions across the brane surface.  

3 Thermodynamics of the Braneworld Black Hole 

The fundamental thermodynamic quantities of the braneworld black hole can be computed using 

standard methods. The temperature is given by: 

𝑇 =
𝜇

2𝜋𝑅
,                                                                                                                                                 (4) 

This temperature characterizes the thermal state of the boundary CFTs and determines the thermal 

properties of the entire system. The uncorrected entropy follows from the area law: 

 

𝑆 =
2𝜋2

3
𝑐𝑅𝑇 +

𝑐

3
ln 2𝑘                                                                                                                           (5) 

where 𝑐 =  3𝐿/(2𝐺𝑁) is the central charge of the boundary CFT. The first term represents the thermal 

entropy of the boundary theory, while the second term is the defect contribution arising from the presence 

of the brane. The energy of the system is, 

𝑆 =
𝜋2

3
𝑐𝑅𝑇2                                                                                                                                         (6) 

 

4 Non-perturbative correction 

The key result of our analysis concerns exponential corrections to the black hole entropy. These 

corrections arise from quantum fluctuations and non-perturbative effects that become important in 

certain regimes of the parameter space. The corrected entropy takes the form: 

𝑆𝑐 = 𝑆 + 𝛼𝑒−𝑆                                                                                                                                        (7) 

where 𝛼 is a parameter that depends on the specific quantum theory under consideration and the 

microscopic details of the black hole. This exponential correction represents a fundamental departure 
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from the classical Bekenstein-Hawking formula and has important implications for black hole 

thermodynamics, particularly in understanding the approach to extremality and the behavior of the 

entropy in quantum regimes. 

The exponential correction in equation (7) can be understood from several perspectives that converge to 

highlight the underlying quantum structure of spacetime. One interpretation attributes the correction to 

quantum fluctuations of the gravitational field near the black hole horizon, which become significant 

when the classical entropy is not overwhelmingly large. From an information-theoretic standpoint, the 

correction captures the discreteness of the underlying quantum degrees of freedom and the finite 

dimensionality of the Hilbert space. Furthermore, within the framework of holography, this correction 

reflects the finite nature of the boundary theory and the discrete spectrum of the associated conformal 

field theory. Together, these perspectives underscore the fundamentally quantum and granular character 

of black hole entropy. The presence of exponential corrections modifies the thermodynamic stability of 

the black hole. The corrected specific heat becomes: 

𝐶 = 𝑇
𝜕𝑆𝑐

𝜕𝑇
= 𝑇

𝜕𝑆

𝜕𝑇
(1 − 𝛼𝑒−𝑆 𝜕𝑆

𝜕𝑇
)                                                                                                            (8) 

This modification can lead to new phases and phase transitions that are absent in the uncorrected theory. 

5 Page Curve and Information Theory 

In the doubly holographic setup, the system exhibits the characteristic Page curve behavior. The 

entanglement entropy between the bath and the black hole initially grows linearly with time: 

𝑆𝑒𝑎𝑟𝑙𝑦(𝑡) =
2𝑐

3
ln (

1

2𝜋𝛿𝑇
) +

4𝜋𝑐

3
𝑇𝑡                                                                                                           (9) 

where 𝛿 is a UV cutoff in the boundary theory. 

At late times, the entanglement entropy saturates due to the formation of quantum extremal islands. The 

saturation value depends on the relative sizes of the black hole and bath: 

𝑆𝑙𝑎𝑡𝑒 = 𝑚𝑖𝑛(𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙, 𝑆𝑖𝑠𝑙𝑎𝑛𝑑)                                                                                                             (10) 

where 𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 represents the thermal entropy of the bath and 𝑆𝑖𝑠𝑙𝑎𝑛𝑑 includes contributions from the 

quantum extremal island. There exists a critical bath size that determines the transition between different 

late-time behaviors: 

𝑅𝑐 ∝
ln 2𝑘

2𝜋𝑇(𝜋−2𝜙Σ)
                                                                                                                                    (11) 

For bath sizes smaller than 𝑅𝑐, the late-time entropy is determined by the thermal bath capacity. For 

larger baths, quantum extremal islands form and determine the saturation value. 

6 Quantum Corrections and Phase Structure 

The exponential corrections significantly modify the phase structure of the black hole system. The 

critical temperature for the Hawking-Page transition becomes: 
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𝑇𝑐 =
1

𝜋2𝑅
[√

𝜋2

4
+ arcsinh2 𝑘 − arcsinh 𝑘]                                                                                           (12) 

For large brane tensions (large 𝑘), this critical temperature decreases as: 

𝑇𝑐 ∝
1

8𝑅 ln 2𝑘
                                                                                                                                           (13) 

The corrected free energy includes contributions from the exponential correction: 

𝐹𝑐 = 𝐹 − 𝑇𝛼𝑒−𝑆 𝜕𝑆

𝜕𝑇
                                                                                                                               (14) 

This modification affects all thermodynamic potentials and can lead to new critical points and phase 

transitions. 

7 Conclusions 

Our results highlight that, exponential corrections fundamentally modify the thermodynamic behavior 

of black holes in braneworld models, revealing deeper aspects of their quantum nature. These corrections 

not only refine our understanding of black hole thermodynamics but also shed light on the microscopic 

structure underlying these gravitational systems. Importantly, they play a significant role in addressing 

the black hole information paradox through the island prescription, as the modified entropy influences 

key transition times and the critical conditions under which quantum extremal islands emerge. From a 

holographic standpoint, the findings offer valuable new tools for probing the thermodynamics of strongly 

coupled quantum systems, capturing non-perturbative effects that are typically inaccessible by other 

methods. Moreover, the form and implications of these exponential corrections align with predictions 

from multiple quantum gravity approaches, such as string theory and loop quantum gravity, suggesting 

a universal character to these modifications. This convergence reinforces the relevance of exponential 

corrections as a robust feature across diverse formulations of quantum gravity. We have investigated the 

thermodynamic properties of massive black holes on branes, focusing in particular on the role of 

exponential corrections to the entropy. Our analysis revealed that these corrections, expressed in the 

form 𝑆𝑐 = 𝑆 + 𝛼𝑒−𝑆, arise from fundamental quantum effects and carry important physical 

implications. They significantly modify the black hole's thermodynamic behavior, altering its stability 

and phase structure, and introducing new critical points and phase transitions that do not appear in the 

classical description. Moreover, the exponential corrections influence the dynamics of entanglement, 

affecting the evolution of the Page curve and contributing to the formation of quantum extremal islands, 

thereby offering fresh insights into the information-theoretic aspects of black holes. We also identified 

specific critical parameters—such as bath sizes and temperatures—that delineate different 

thermodynamic phases, and demonstrated how quantum corrections shift these critical values. From a 

holographic perspective, our results shed new light on the emergence of spacetime from quantum 

entanglement and the nature of gravity in a holographic framework. These findings enhance our 

understanding of quantum black hole thermodynamics and offer valuable tools for probing the deep 

connections between gravity and quantum mechanics. Looking ahead, future research should extend 

this analysis to higher-dimensional settings and alternative brane configurations, as well as explore 

connections with other approaches to quantum gravity. It is important to note that the exponential 

corrections examined here represent just one category of quantum modifications; a comprehensive 

understanding of quantum black holes will require a broader analysis of various correction types and 

how they interact across different physical regimes. 
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Abstract. A line of first-order phase transitions is conjectured in the phase diagram of Quantum 

Chromodynamics at non-zero baryon density. If this is the case, numerical simulations of neutron 

star mergers suggest that various regions of the stars may cross this line multiple times. This results 

in the nucleation of bubbles of the preferred phase, which subsequently expand and collide. The 

resulting gravitational wave spectrum is highly sensitively to the velocity of the bubble walls. We 

use holography to perform the first microscopic simulation of bubble dynamics in a theory that 

qualitatively mirrors the expected phase diagram of Quantum Chromodynamics. We determine 

the wall velocity in the metastable regions and we compare it to theoretical estimates. We discuss 

implications for gravitational wave production. 
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Abstract. In the framework of AdS/CFT duality, entropy and complexity play pivotal roles in 

understanding the deep connections between gravity and quantum information theory. This paper 

explores holographic complexity through the lens of complexity-action duality, focusing on four-

dimensional accelerated AdS black holes. We analyze the behavior of complexity in these 

spacetimes and discuss the implications of our findings for the broader understanding of 

holographic principles and quantum gravity. Our findings reveal an inverse relationship between 

the growth rate of complexity and the degrees of freedom of accelerated black holes. 
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Abstract. Holographic communication is a transformative technology that is reshaping the digital 

interaction landscape by enabling the creation of realistic, immersive, and interactive 3D 

experiences. Access to the past is a concern for consumers when dealing with products, and 

marketers are also aware of this. Effective use of retro marketing in terms of communication 

(brand, music, and advertising) helps to evoke emotions to revive the past. Many different products 

on the market, such as music, movies, or television programs, can increase nostalgic feelings in 

people. Retro itself is a nostalgic memory of the past. An imitation of a style, fashion, or design 

from the recent past. There is very little research in the joint field of the impact of holographic art 

on reviving past memories and its impact on product sales. The authors of the article try to explore 

the possibility of creating new joint working groups or even applied courses or fields of study by 

opening a new research path in the interdisciplinary field (holographic and retro marketing). 

 

1 Introduction 

When the soulful melodies of Umm Kulthum came to life again in Dubai on October 12th and 13th, 

2024. Thousands of fans of the Egyptian singer, known as the "Star of the East", saw her memory and 

the glorious era of Egypt and the Arab world before their own eyes. In this holographic show, the 

legendary artist, who died in 1957, returned to the stage "Alive". A vivid and captivating presence. With 

every note, her voice resonates in the hall, accompanied by a live orchestra, and the digital and real 

worlds blend seamlessly. The audience relived the emotion, passion and depth of her performances, as 

if time had turned back. For this enchanting experience, a tribute to Umm Kulthum's art, where the past 

and the present harmoniously blend. 

Holography can explain how our brains can pack so many memories into such a small space. Sometimes 

in our lives, looking at a long-forgotten object, or a particular smell, suddenly causes us to recall scenes 

from our past lives. The idea of a holographic pattern is another example of memory-evoking tendencies 
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[16]. The enduring appeal of retro marketing lies in its ability to bridge generations, evoking a sense of 

nostalgia while embracing contemporary relevance [7]. By infusing elements of the past into today’s 

strategies, brands not only differentiate themselves but also create compelling stories that resonate 

deeply with consumers [12]. Retro marketing is not just a strategy; it is an invitation to celebrate the 

richness of the past while building brand identities that stand the test of time. 

Effective use of retro marketing in terms of communication (brand, music, and advertising) helps evoke 

emotions to bring the past to life [29]. Nostalgia marketing allows brands to tap into these powerful 

emotions and create a deep emotional connection with their audience [33].While many businesses 

employ nostalgia in their marketing strategies [13], knowledge about the effect of nostalgia proneness 

on consumer behavior is inadequate [17]. 

This type of marketing can provide meaningful experiences for consumers by using images, sounds, and 

themes that evoke fond memories of the past. For example, using vintage music, advertisements, or 

products that are reminiscent of a particular era can help marketers create a stronger connection with 

their audience. For retro marketing to be effective, visualizing customers' good memories of a brand is 

of great importance, and it is at this point that embracing retro marketing with holographic science can 

be well imagined. The sense of familiarity and the rekindling of faded memories by tasting a flavor or 

smelling a scent3 perfectly prepares the consumer for a pleasant purchase in the "Present" based on the 

"Past." 

2 Why is nostalgia important for marketers? 

 

In fact, various studies were reviewed to answer this question, which will be discussed later. But we also 

asked artificial intelligence and it gave an interesting answer!!: "This directly affects brand awareness, 

loyalty, and ultimately sales." 

As we will see, our intelligent friend's answer is not complete! and several aspects are overlooked . 

Nostalgia, a sentimental longing for the past, has been shown to enhance emotional well-being, social 

connectedness, and even cognitive function [22]. Modern branding activities by a host of businesses 

establish a decision-making attention in nostalgia as a practical marketing instrument. Such activities, 

employed in a widespread diversity of product categories, aim to take consumers back to the past [10]. 

In NBC Universal's (2013)4 “Brand Power Index” study, which measures the 500 most talked about 

brands as determined by factors like social media buzz and online searches, brands evoking the past shot 

to the top of the Index. This suggests that brand nostalgia can be a key driver for consumer brand 

purchase [5,6]. Little attention, however, has been paid to measuring the complex nature of this 

construct. More academic research is surely warranted to develop and validate a generalizable measure 

of brand nostalgia to help companies gauge and track the nuanced components of nostalgia associated 

with their brands. 

Nostalgic advertising is a type of advertising that, by engaging people's emotions and attitudes, becomes 

a powerful tool in purchasing products. [2]. The brands which are positioned by  using nostalgia enjoy 

higher brand equity, more favorable product decisions [11] and heightened purchase intentions and the 

positive word of mouth. [10]. There is a positive relationship between marketing nostalgia and consumer  

 
3 Recent research has shown that our sense of smell is based on what are called osmic frequencies. Baksi's work, on the other 

hand, had clearly shown that our skin is sensitive to frequencies caused by vibrations, and even went so far as to suggest that 

the sense of taste is also the result of frequency analysis. (From the book "The Holographic World" by Michael Talbot, 

translated to Persian by Dariush Mehrjoui) 
4NBCUniversal is one of the world’s leading media and entertainment companies.www.nbcuniversal.com 
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purchases Intention. [1]. Nostalgia marketing first encouraged nostalgia emotion, then nostalgia emotion 

transformed into nostalgia cognition, and eventually nostalgia behavior is formed. People buy more 

nostalgia product to fulfill the role of nostalgia marketing [24,29]. 

3 Reviving Nostalgia Through Holographic Displays 

Holographic displays are being used to evoke nostalgia by generating immersive, 3D visualizations of 

past objects, environments, or even deceased individuals. This technology merges retro aesthetics with 

cutting-edge innovation, allowing people to experience a sense of the past in a novel and engaging way. 

[9,23]. Holographic displays may amplify these effects by providing multisensory, immersive 

recreations of past experiences. A study by [14] demonstrated that 3D holographic projections of 

personal memories elicited stronger emotional responses compared to 2D images, activating deeper 

memory retrieval mechanisms. [31] found that holography may facilitate more vivid and emotionally 

intense nostalgia compared to traditional media. Holographic Advertising represents a significant leap 

forward in the way brands engage with consumers. [3]. 

4 Advertising Based on Nostalgia Tendencies Using Holographic Advertising 

Nostalgia tendencies mention to the sentimental longing or reflective affection for the past, often 

considered by positive emotions diverse with a sense of loss or desire. Study suggests that nostalgia 

serves psychological functions, such as enhancing disposition, promotion social connectedness, and 

providing a sense of continuity in one's identity [22,20]. Individuals may involve in nostalgic replication 

more often during times of transition, loneliness, or uncertainty, as its suggestions comfort and repeats 

self-worth [30]. Although normally adaptive, extreme nostalgia can occasionally lead to impractical 

nostalgia of the past, possibly hindering present-day coping [4]. 

Nostalgia acts as an emotional resource, helping individuals navigate life's challenges by drawing on 

meaningful past experiences [20]. Research has shown that customers' nostalgic tendencies increase 

consumers' purchase intentions by influencing positive emotions, brand attachment, brand trust, and 

brand commitment. [8]. By integrating 3D holographic displays into advertising strategies, companies 

can create immersive experiences that not only capture attention but also leave a lasting impression. 

[15]. 

This innovative approach to marketing takes advantage of human psychology; our brains are wired to 

respond more actively to 3D moving images , [32]   . Which explains why holograms can be so effective 

at attracting people [3]. Unlike traditional two-dimensional advertising, holographic advertising allows 

products to be displayed in a way that makes them appear tangible, almost as if they could be touched 

[21]. This creates a unique opportunity for brands to showcase their products in full detail, from every 

angle, without the limitations of physical space . 

5 Ultimately, The Future Of Retro Marketing Will Depend On The Support Of Holographic 

Artists 

The future of retro marketing will depend significantly on the support of holographic artists, as emerging 

research highlights the psychological and technological synergies between nostalgia-driven consumer 

behavior and immersive holographic experiences. Studies in consumer psychology demonstrate that 

nostalgia enhances brand attachment by activating the brain's reward system [22]. 

While holographic technology capitalizes on spatial presence and interactivity to deepen emotional 

engagement [29]. Advances in holographic displays, such as light-field projections [25], enable 

photorealistic recreations of retro aesthetics, blending vintage appeal with novelty—a key driver of 

consumer interest [13]. 
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However, ethical concerns arise regarding the use of posthumous holograms, as neural research suggests 

that hyper-realistic avatars may trigger uncanny valley effects [28], necessitating careful artistic 

mediation. Thus, holographic artists, equipped with interdisciplinary expertise in archival design, 3D 

rendering, and cognitive ergonomics, will be essential in crafting ethically sound, emotionally resonant 

retro campaigns that leverage holography's unique affordances [27]. 

6 Ethical Considerations   

 

While holographic nostalgia offers emotional benefits, ethical concerns arise regarding hyper realistic 

simulations of deceased individuals [26]. and potential over-reliance on virtual nostalgia over real-world 

engagement. But as we embrace these advancements, we must do so with caution. We must balance 

technological progress and our ethical responsibility to those whose likenesses we project. AI holograms 

can enhance our experiences and allow us to engage with the past in ways we never thought possible, 

but they also force us to consider how we want to remember and celebrate those who have come before 

us  .Holograms have the power to both honor and exploit. As we navigate this exciting yet uncertain 

future, we must tread carefully, ensuring that our use of this technology aligns with the respect and 

dignity we owe to the legacies we seek to preserve .One thing is clear: holograms, like the legends they 

portray, will continue to capture our imagination and redefine how we experience the past and present. 

Whether we are enthralled or uneasy, we’re standing at the edge of a new frontier where technology can 

bring memories to life in ways we’re only beginning to understand . 
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Abstract. We perform a comprehensive analysis of the Generalized Uncertainty Principle (GUP) 

in Anti-de Sitter space, revealing a fundamental quantum gravity scale. This critical radius governs 

three interconnected phenomena: (i) holographic breakdown signaled by vanishing boundary 

stress tensor and (ii) complex central charge 𝑐𝑒𝑓𝑓, and (iii) Page curve modification through 

information recovery dynamics (∆𝑆recovery > 0). These effects establish a consistency condition 

for valid AdS/CFT duality. The critical radius emerges as the true Planck scale frontier, where 

black hole transforms into stringy remnants and information scrambles topologically. It can be 

interpreted as a black hole-to-string transition point, supported by entropy divergence. 
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Abstract. In this study, we demonstrated an idea of generating atomic-scale hologram of a 

molecule within one of its vibrational modes using X-ray holography. Hologram is recorded by 

incident X-ray wave, upon the molecule after triggering one of its vibrational modes. For 

simplicity, the ammonia (NH3) molecule is chosen as a test molecule while triggered in two 

distinct vibrational modes: the symmetric stretching and the scissoring modes. The result depicts 

that the vibrational dynamics modulate the holographic patterns, suggesting the way for 

developing a new technique of time-resolved molecular holography that captures both atomic 

position and vibrational state. 

 

 

1 Introduction 

Holographic images of a molecule during vibration in a specific mode, can be used to record 

dynamical behavior of a molecule under specific circumstances. Capturing this hologram 

requires the source with wavelength in atomic orders, e.g. XFELs which opens opportunities for 

imaging at atomic resolution with femtosecond temporal precision [1, 2]. 

The main idea involves triggering a specific vibrational mode of the target molecule (which 

in our case is ammonia) by use of tuned IR radiation, then capturing its holographic signature 

using ultrashort X-ray pulses as source [3]. This approach, allows capturing both static structure 

and dynamic changes during vibrations. 

1.1 X-Ray Holography 

Hologram itself, is used to capture both amplitude and phase; considering a wave coming 

from a target sample, must be captured, in order to achieve this goal, a reference wave must be 

used to interfere from the one coming from the sample. Due to inference between reference and 

object wave, a pattern is created which carries information about both the phase and amplitude 
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of the wave coming from the target sample, hence by capturing interference pattern a recording 

is created, called hologram. 

Now without presence of the original sample, one can reconstruct the information, just by 

illuminating the hologram obtained from the sample. In simple words, holography means 

recording and reconstruction of waves [4]. 

General equation which governs holography, is as follows: 

𝐼 = |𝑅 + 𝑂|2 = (𝑅 + 𝑂)(𝑅 + 𝑂)∗ = |𝑅|2 + |𝑂|2 + 2 · ℜ(𝑅 · 𝑂∗)                                                          (1) 

where R and O represent reference and object waves respectively, and I is intensity caused by 

interference. ℜ sign denotes real part operation [4, 5].  

X-ray holography on the other hand, is an imaging technique with no need of lenses, that records 

interference of the reference wave and scattered X-rays from the sample. This technique also 

allows computationally reconstruction of 3D structural information with no need of optical 

elements. In addition, resolution beyond visible light limits is achievable [5, 6]. Several 

applications for X-ray holography are reported in: 

Material Science 

Atomic Imaging: Mapping of 3D atomic arrangement, e.g., Sr atoms in SrTiO3 [7]. 

Defect Analysis: Revealing distortions of lattice around dopants, e.g., Mn in GaAs [8]. 

Dynamics: Capturing nanoparticle explosions by femtosecond pulses [9]. 

Biology 

“Water Window” Imaging: Natural contrast can be provided for hydrated samples, e.g. bacteria Cobetia marina, 

by soft X-rays (2.48 4.13 nm) [10]. 

Radiation Therapy: Targeting tumors while sparing healthy tissue [11]. 

Neural Reconstruction: 3D imaging of neurons at sub-100nm [12]. 

Industry 

Nanomagnetism: Capturing resonant XH images of magnetic domains in Co/Pt films [13]. 

Battery Electrodes: Quantification of microstructural changes in fuel cells [14]. 

Another application of X-ray holography is discussed in our study, which can become useful in subjects 

such as atomic and molecular physics, material science, industry, etc.; hologram of molecular vibrational 

modes. 

1.2 The Ammonia Molecule: Structure and Vibrational Dynamics 

Ammonia (NH3), contains 4 atoms, with a pyramid like geometry with nitrogen at the top, bonded to 3 

hydrogen atoms, each at other lower corners, forming a molecule with C3v symmetry. Bonds are formed 

between three free electrons of N in the 2p orbitals, each with one free electron of three H atoms in 1s 

orbitals. These bonds adopt a geometry with bonding angle of 107.3◦ due to sp3 hybridization, and create 

a non-planar structure with a permanent dipole moment (~1.5D) directed from N to H plane. Ammonia 

has a unique feature, inversion motion; N atom can move through the plane of H atoms (bottom surface 
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of pyramid), switching between two equivalent pyramidal configurations, which leads to a double-well 

potential with a small energy splitting between the antisymmetric and symmetric vibrational states. 

Ammonia has six vibrational modes (3N − 6 for nonlinear molecules) including symmetric stretch (A1), 

asymmetric stretch (E), symmetric bending (umbrella mode, A1), and asymmetric bending (scissoring, 

E). Triggering each mode requires a specific wavelength and polarization, e.g. symmetric stretch mode 

must be triggered under IR radiation of wavelength 3337cm−1 and polarization along the molecular 

symmetry, or asymmetric bending is triggered under IR radiation of wavelength in range 

1600~1700cm−1 and linear polarization perpendicular to the NH3 symmetry axis [15]. 

2 Results and Discussion 

We considered three different states of ammonia molecule: without vibration, the symmetric mode, and 

the scissoring mode, then simulated hologram for each of them in both near-field and far-field. By 

investigating the holograms captured at the near-field region (figure 1), the results show containing 

fluctuating pattern within capturing, consequently information obtained are not clear enough to become 

useful. 

On the other hand, holograms captured at far-field region (figure 2), present more clarity about the effects 

of vibration on resulted hologram. However, it is not hard to recognize that the far-field holograms are 

similar to their near-field correspondents except the fluctuating pattern overlap is removed. 

By comparing the pattern generated in relaxed state (no vibration) with other two patterns, it can be seen 

how vibrations modulate the holographic patterns; in a specific vibrational mode, the atom which does 

not involve any movements, will cast a shadow, e.g. in the symmetric mode (figure 2b) nitrogen atom at 

center, is fixed at its position while other three hydrogen atoms obey periodic movement toward and 

away from it, following sinusoidal path which indeed washes out the shadow. 
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   (a)                                        (b)                                       (c) 

Figure 1: Holograms captured at near-field region: (a) without vibration, (b) symmetric mode, 

and (c) scissoring mode (axes units are micro-meter) 

 

(a)                                       (b)                                             (c) 

Figure 2: Holograms captured at far-field region: (a) without vibration, (b) symmetric mode, and 

(c) scissoring mode (axes units are centi-meter) 

 

In other words, shadows correspond to the atoms which are staying still while the bright areas 

belong to the atoms which are pivoting. 

Another observation in captured hologram, is white grains in far-field holography patterns, even 

by increasing number of points in simulation, white grains are not removed, therefore it is 

predicted, grains are caused by speckle-gram of illumination source. 

3 Conclusion 

Capturing holographic image of a dynamic system such as vibrating molecule, helps to understand 

both dynamic and static behaviors of the system in question. Holographic pattern generated by 

impacts of motion, is the modulated form of pattern generated while the system is in relaxed 

situation, consequently this modulation arise by work of the parts in system which stay still together 

with the parts which are following specific path of motion. 
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For future works, there are two topics to be studied: analysis of white grains appeared in far-field 

hologram and how to reconstruct the captured hologram. 
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Abstract. In this study we present a reconstruction of far-field X-ray hologram of a vibrating 

ammonia (NH3) molecule. On previously simulated holograms of relaxed state and vibrational 

states symmetric-stretch and scissoring, we demonstrated the importance of holography for 

molecular analysis in vibrational behavior. Here we reversed the approach; given a hologram of 

specific vibrational mode, and reconstructing recorded information. This will enable studying 

vibrational behavior even if the molecule in question is not presented. 

 

 

1 Introduction 

Holography enables recording of both amplitude and phase information [1], when a wave 

encounters target it undergoes scattering and each of the points on the target in question 

responsible of scattering, is considered as secondary sources, and by encoding interference 

pattern of these waves with a reference beam, both amplitude and phase information can be 

recorded. 

X-ray holography, have some special properties like lensless imaging at atomic scale when using 

short-wavelength sources such as X-ray free-electron lasers (XFELs) [2]. In previous work [3], 

we demonstrated near- and far-field holograms of an ammonia in three different states: 

(i) relaxed state, when none of vibrational modes are triggered and the molecule remains static 

without dynamic variations, (ii) symmetric-stretch when all three hydrogen atoms move forward 

and backward along a sinusoidal path getting close and far from nitrogen, and (iii) scissoring 

mode when only of three hydrogen atoms remains static and other two atoms undergo dynamical 

variations. 

By analyzing recorded holograms, we figured that far-field holograms provide more accurate 

information based on static behavior and dynamic variations [4]. While having a holographic 

image of a target, several information can be resolved from the hologram about the target, e.g. 

geometrical shape and dynamical variations. 
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In this paper we demonstrate reconstructed information from the holographic recordings 

described in previous work by presenting a comprehensive computational framework that 

connects far-field holographic imaging with vibrational mode molecular dynamics. Our 

approach involves following steps in order to reconstruct the captured holographic image in our 

previous work [3]: 

1. modeling ammonia molecule as a four-body spring-mass system [5], 

2. solving for normal modes and computing time-dependent positions during oscillation [6], 

3. calculating wave scattering from the oscillating molecular system [7], 

4. implementing holographic reconstruction algorithms [8], 

to recover molecular structure and dynamics from simulated interference patterns. 

2 Theory and Background 

By examination of equations on recorded intensity as hologram and applying inverse mathematics, 

it is possible to achieve information stored on holographic image, therefore it is necessary to 

understand forward path of holography in order to figure out the backward path. 

2.1 Hologram Reconstruction  

The recorded hologram intensity is: 

I(r) = |R(r) + O(r)|2 = |R|2 + |O|2 + 2ℜ(R · O⋆)  (1) 

where R is the reference wave, O the object wave, both at plane of detector, and the sign ℜ(·) 
denoted real-part. This expression is identical to the one described in previous paper. There are 
two regimes of reconstruction based on the regions of recorded hologram, (i) far-field (Fraunhofer) 
regime and (ii) near-field (Fresnel) regime [8]. 

 

(i) Far-field (Fraunhofer) reconstruction Consider a detector is placed in a large distance 
compared to the dimensions of system, the object wave O(r) at the detector is proportional to 
the Fourier transform of the object exit wave o(ρ) in the sample plane: 

O(q) ∝ F [o(ρ)](q),        𝒒 =
𝟐𝝅

𝝀𝒛
𝒓    (2) 
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and reconstruction reduces to retrieving o(ρ) by inverse Fourier transform of the measured 
complex amplitude or by applying phase-retrieval when only intensities are measured. 

 

(ii) Near-field (Fresnel) reconstruction For propagation distances not so far to satisfy the 

conditions required to be in Fraunhofer region, the Fresnel diffraction integral governs free- 

space propagation. We implement back-propagation by convolution with the Fresnel kernel 

that can be converted to multiplication in Fourier domain: 

 

 

3 Methodology 

We present a simple physical framework in order to reconstruct the vibrational state of a molecule from a 

single recorded hologram. The method involves molecular dynamics, coherent scattering theory, and 

analytical time-averaging to relate the measured holographic intensity pattern to the instantaneous atomic 

motion. 

3.1 Molecular Representation and Vibrational Modeling 

The configuration used is spring-mass model, i.e. the molecule is considered as a set of point masses 

(atoms) connected by springs (chemical bonds). Based on the molecular geometry, equilibrium positions 

are determined, and bond stiffnesses are approximated via uniform spring constant. 

The vibrational eigenmodes are obtained by solving the coupled equations of motion in matrix form, 

yielding discrete eigenfrequencies and mode shapes. As a general rule of thumb, any instantaneous 

molecular configuration can be expressed as a superposition of these modes with given amplitude and 

phases. 

 

3.2 Scattering from Vibrating Atoms 

Incident coherent wave (X-ray laser) is considered a plane wave, and when encounters the molecule in 

question (ammonia), each atom acts as a point scatterer, i.e. they become secondary sources of emission, 

re-emitting spherical waves with phases depended on their instantaneous positions. 

Consequently, when the molecule in question, has vibrations, these motions modulate the incident 

plane wave coming from the source, and by encoding interference pattern of secondary waves with a 

reference wave, dynamical variations of the molecule is recorded. As mentioned in previous paper, 

simulations show when an atom is in motion, compared to relaxed state, it casts no shadows, i.e. pivoting 

behavior of atoms, washes out cast shadows in relaxed state and leave bright spots instead. Analytical 

time-averaging over the exposure duration yields scattering amplitudes weighted by Bessel functions, 

analogous to a generalized Debye-Waller factor. This formulation captures the redistribution of scattered 

intensity due to molecular motion without requiring time-resolved measurements. 

 

3.3 Hologram Formation and Time-Averaged Intensity 

The hologram is a recording of interference pattern generated by superposition of a reference wave 

(unscattered) and an object wave (scattered). In the case, which the object in question (in our case the 

ammonia) has dynamic behavior, generated pattern corresponds to the time- averaged intensity 



53 
 

distribution over many oscillation periods. This averaging encodes mode- specific signature in the 

interference pattern rather than just blurring, i.e. the resulted capturing contains both static structure 

and dynamic behavior. 

4 Results and Discussion 

In reconstruction process from recorded holograms in previous paper, for (i) relaxed state, (ii) symmetric 

stretch mode, and (iii) scissoring mode, two results are illustrated for each: 

1. 1D hologram 

2. Real static structure and vibrational state 

By presenting and describing each case, we break through the topic in more detailed manner. 

 

4.1 Relaxed State 
In relaxed state, no dynamic behavior is observed and this case can be used as reference state in order to 

compare the effect of motion on holographic imaging. Figure 1 shows 1D-holographic image of relaxed 

state, this hologram is generated by considering the cross-section of imaging system, like the case of 

analyzing resulted interference pattern from Young’s double-slit experiment from the side view which is 

sinc function. All other 1D-holograms in forward sections follow this description. Figure 2 by 

comparing both images, shows that in static situation all four atoms in ammonia molecule are casting 

shadows on screen, in which the shadow resulted from nitrogen molecule is darker and has smaller spot 

size than the shadows cast from hydrogen atoms, because of the difference in their atomic sizes. Also, by 

using relaxed state as reference image, one can tell in other images, darker shadow spots are defining 

position of nitrogen atom while the brighter shadow spots are defining positions for hydrogen atom. 

 

 

 

 

Figure 1. 1D hologram of relaxed state (axes units are in cm) 
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) Å in are plot left in units (axes hologram from structure moleculare Recontructed 2. Figure 

 

 

4.2 Symmetric Stretch 
In the case of symmetric stretch mode, all hydrogen atoms have motion. By comparing resulted images 

with previous figures, it shows that the movement of hydrogen atoms lead to disappear-ance of cast 

shadows by them. Also, the symmetricity can be observed from both images in (figure 3); It can be seen 

from (figure 3a) that symmetric motion of hydrogen atoms with respect to central nitrogen atom lead 

to more symmetricity compared with (figure 1). In addition by comparison of (figure 2) and (figure 3b), 

one can observe that cast shadow from nitrogen remains unchanged because it is still fixed at its position 

will disruption in shadow spots around it is symmetric. 

 

3.3.1 1D-hologram (axes units are in 

cm) 
3.3.2 Recontructed moleculare 
structure from hologram (axes units in 

left plot are in Å ) 

Figure 3. Hologram reconstruction for symmetric stretch vibrational mode of ammonia 
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4.3 Scissoring Mode 
Now at last, for the case of scissoring mode, in which only on of three hydrogen atoms remain fixed at 
its position while other two are under motion, it can be seen from (figure 4) that the effect of movement 
on holographic images is similar to previous cases. Therefore, in order to reconstruct the molecular 
state from captured hologram we must first consider again that motion is the main reason of cast shadow 
disruption compared with relaxed state. By comparing (figure 4a) and (figure 1), effective change can be 
observed in the right side of y − axis while it corresponds to moving hydrogen atoms. Also, by a 
comparison between (figure 2), (figure 3b), and (figure 4b), differences are easy to identify; Whenever an 
atom remains fixed in its position, cast shadows still unchanged, in contrast, any movement leads to 
disruption in cast shadow with respect to the reference (relaxed state). 

 

 

 

Figure 4. Hologram reconstruction for scissoring vibrational mode of ammonia

1D-hologram (axes units are in 

cm) 
Recontructed moleculare structure from 

hologram (axes units in left plot are in Å ) 
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5 Conclusion 

Holographic reconstruction of ammonia in relaxed state and two distinct vibrational modes, symmetric stretch 

and scissoring, reveals two major information: (i) atomic motions are the reasons behind disruptions in 

interference pattern and (ii) structure geometry and current state of vibration can be shown and analyzed by 

hologram of the molecule with no necessary need of molecule presence. The relaxed state provides a perfect 

reference and enables the possibility of predictions about molecule dynamics in question when it chooses the 

dynamic states instead of remaining static. In addition, comparing each mode to the static reference enables 

direct identification of vibrational dynamics from a single hologram which confirms that the method is effective 

for structural and dynamic analysis. 
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Abstract. In this work, we present an experimental method for generating circular arrays of Perfect 

Vortex Beams (PVBs). The arrays, featuring distinct topological charges, are produced using an 

axicon embedded within singular almost-periodic phase structures (SAPPSs). A Fourier lens 

transforms an incident Gaussian beam modulated by the SAPPS, resulting in an array of PVBs at the 

focal plane. Such structured PVB arrays hold significant potential for applications across various 

scientific and research domains, including optical trapping, parallel particle manipulation, and 

structured light-matter interactions. 

 

 

1 Introduction 

 

Optical vortices are a class of structured light fields characterized by a helical phase structure of the form 

exp(jlϕ), where ϕ denotes the azimuthal coordinate and l represents the topological charge (TC). This phase 

structure imparts an orbital angular momentum (OAM) of lℏ per photon, where ℏ is the reduced Planck 

constant [1]. The ability of vortex beams to carry and transfer angular momentum to matter has made them 

highly valuable in a wide range of optical systems. 

Among the most commonly studied optical vortex beams are Laguerre-Gaussian (LG) [2], Bessel-Gaussian 

(BG) [3-4], and Perfect Vortex Beams (PVBs) [5], each exhibiting unique spatial and propagation 

properties. For LG and BG beams, both the transverse mode profile and the radius of peak intensity depend 

on the topological charge l; as l increases, the beam's ring size typically broadens. This intrinsic dependence 

poses challenges for applications requiring uniform beam size regardless of TC [6]. 

Perfect vortex beams (PVBs), in contrast, maintain a constant ring radius independent of the topological 

charge, making them particularly attractive for applications requiring mode uniformity [7]. The ability to 

generate and control structured arrays of such beams with varying topological charges is crucial for 

advanced optical applications including high-resolution microscopy[8-9], optical trapping and 

manipulation [10], quantum entanglement [11], and high-capacity communication systems [12-13]. 

Recent investigations have explored vortex beam arrays produced through the far-field diffraction of pure 

amplitude 2N-gonal almost-periodic structures (APSs) illuminated by vortex beams of varying TCs [14]. 

Additionally, the generation of Bessel beam arrays using axicons embedded in APSs has been 

demonstrated. Building on these developments, the present study introduces a method for generating arrays 

of perfect vortex beams using an axicon integrated within singular almost-periodic phase structures 

(SAPPSs), offering a promising platform for advancing structured light technologies in both classical and 
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quantum regimes. 

Consider  a single-ring-spectrum APS as detailed in the appendix of [15]. This optical component was 

employed for 3D multi-particle trapping in [16]. Here, the impulses are positioned at both the center and 

the vertices of an octagon in the spectral domain. Building upon this idea, a novel APS can be designed 

where spectral impulses are located at the center and vertices of a regular polygon [14].  

According to the general theory of diffraction, the transmittance function of an SAPPS can be expressed in 

a generic vector form as: 

( ) ( ) 0

rN -i2π +ilφ
r

SAPPS

n=0

1
t = cos 2π e

2N
 n

r f .r .                      (1)  

Here we have fₙ = (ν cos φₙ, ν sin φₙ) where φₙ = (n − 1)π/N and ν represents the fundamental spatial 

frequency of the structure. Although the structure defined by equation (1) is not generally periodic, we can 

define a characteristic fundamental quasi-period for the structure as Λ = ν⁻¹. To enable a direct comparison 

with the general form of APSs in equation [14], we can rewrite equation (1) as: 

 

( ) ( )
2N

SAPPS

n=1

1 1
t = + exp i2π .

2 4N
 n

r f r , (2) 

where we used fN+m = −fm for m = 1, 2, ..., N as a result of φN+m = φm + π, so that t0 = 1/2, tn = (4N)−1 for 

1 ⩽ n ⩽ 2N, and tn = 0 otherwise.  

The optical field immediately after the structure reads: 

( ) ( ) ( )SAPPS
Ψ ,0 = u ,0 tr r r , (3) 

where, in polar coordinates, the field of a Gaussian beam at ( )u 0r,  can be expressed as 

( )

2r

2
0

2

2

0

2r
u 0 e

ω

ω
=r,

. (4) 

Upon propagation over the distance z in free space, the field is well known to remain shape-invariant 

such that 

 

( ) ( ) ( )

( )

2ikr 2
2q z

G 2

2r
u z g z e

z

 
   

 
r,

ω

, (5) 

where g(z), q(z), and w(z) have been defined in Eq. (4) of Ref [14]. 

Let a Gaussian beam with its waist at z = 0 illuminate an SAPPS. The amplitude of a diffracted wave in 

focal lens can now be written as:  

( ) ( ) ( ) ( )
T 0

n

z r lφ
-i2π( + - )

z r 2 2N
i2πυrcos θ-φ

G G n

n=1

1 e
ψ , z = u r, z + e u r , z

2 4N

 
 
 
 
 

r F
. 

 

 (6) 

 

 

Figure 1: Theoretical comparison of power distribution ratios in SAPPSs for varying N (1 to 5). Power 

transmittance of the SAPPS versus N (orange bars). The distribution of total impulse along a concentric 

circle, expressed as a fraction of the transmitted power (green bars) and the incident power (blue bars). 

 

In figure 1 we show the transmitted power as function of N. As is apparent, the power transmission 
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coefficient decreases with N, approaching 25%. We separate the transmitted power into two parts: P0, 

associated with the zero diffraction order or impulse, and Pcircle, representing the total power of other 

impulses along a concentric circle. 

We show that the power fractions of the zero-order impulse and the higher-order components, relative to 

the transmitted power, are given by P0/Pt =2N/(2N + 1)  and  Pcircle/Pt = 1/(2N +1) , respectively. Moreover, 

their corresponding fractions with respect to the incident power are  P0/Pin = 1/4  and Pcircle/Pin = 1/(8N). 
 

Figures 2 and 3 illustrate the conceptual framework and optical design used for generating PVB arrays with 

different TCs. As shown in Fig. 2(a), the generation of a single PVB begins with a Gaussian beam that is 

transformed into a Bessel beam using a spiral phase element. This intermediate Bessel beam is then Fourier 

transformed by a lens to produce a PVB at its focal plane. The concept is extended in Figure 2(b) to create 

a PVB array by replacing the spiral phase element with a combination of an axicon and an SAPPS. This 

configuration generates a Bessel beam array, which is subsequently converted into an array of PVBs 

through Fourier transformation. 

Figure 2 presents the schematic procedure for designing the phase masks required to generate these PVB 

arrays with controllable and distinct TCs. 
 

 

Figure 2 (a) Schematic of PVB generation: a Gaussian beam is converted into a Bessel beam using a 

spiral phase element, and then transformed into a PVB at the focal plane of a Fourier lens. (b) Extension 

to a PVB array: the Gaussian beam passes through a combination of an axicon and SAPPS, forming a 

Bessel beam array, which is then Fourier transformed by a lens into a PVB array. 

 

 

Figure 3. Schematic illustration of the design process for phase masks used to generate PVB arrays with 

varying TCs. 
 

The experimental setup is shown in Figure 4. A laser beam, after passing through a spatial filter to remove 

spatial noise originating from the laser source, is collimated using lens L1 and directed onto a spatial light 

modulator (SLM). Two half-wave plates (λ/2) are placed before and after the SLM to enhance contrast and 

suppress unwanted noise. 

The desired phase pattern is generated by a computer and applied to the SLM, thereby modulating the phase 
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of the incoming beam. By performing a Fourier transform of the SLM's zero-order diffraction using lens 

L2, an array of PVBs is formed at the focal plane of the lens, corresponding to the imposed phase pattern. 

This PVB array is then captured using a CCD camera. 

 

Figure 4. Experimental setup for generating arrays of PVBs. A laser beam is spatially filtered to remove 

noise, collimated by lens L1, and directed onto a spatial light modulator (SLM). Two half-wave plates 

(λ/2) placed before and after the SLM optimize polarization for improved phase contrast and noise 

suppression. The computer-generated phase pattern is applied via the SLM to modulate the beam's phase. 

A Fourier transform performed by lens L2 forms the PVB array at its focal plane, which is recorded by a 

CCD camera. 

 

In Figure 5, the first row shows the phase patterns applied to the SLM for N = 1, 2, 3, 4. The second and 

third rows display the corresponding simulated and experimental results, respectively, of the Fourier 

transform of the far-field diffraction from these phase patterns, captured at the focal plane of lens L2. In all 

cases, the topological charge is set to zero, and the radial scaling parameter is fixed at 0.5 mm. 
 

 

Figure 5. Generation of PVB arrays using SAPPSs with different symmetry orders. Top row: phase masks 

applied to the SLM for N = 1, 2, 3, 4. Middle row: simulated intensity distributions obtained by Fourier 

transforming the far-field diffraction of the phase-modulated beams. Bottom row: corresponding 

experimental results recorded at the focal plane of lens L2. All cases correspond to a topological charge 

of zero and a fixed radial scaling parameter of 0.5 mm. 

 

In Figure 6, the first and second rows show the simulated and experimental results, respectively, for the 

PVB array corresponding to N = 2. The first to fourth columns present the results for radial scaling 

parameters of 0.7 mm, 1 mm, 1.5 mm, and 2 mm, respectively. The results demonstrate that by adjusting 

the radial scaling parameter, the thickness and diameter of each PVB within the array can be effectively 

controlled. 
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Figure 6. Effect of the radial scaling parameter on the structure of PVB arrays for N = 2. Top row: 

simulated intensity distributions. Bottom row: corresponding experimental results. Columns from left to 

right correspond to radial scaling parameters of 0.7 mm, 1 mm, 1.5 mm, and 2 mm, respectively. The 

results indicate that the beam thickness and diameter of each PVB in the array can be tuned by varying 

the radial scaling parameter. 
 

In Figure 7, the first row shows the phase patterns applied to the SLM for N = 1, 2, 3, 4. The second and 

third rows present the simulated and experimental results, respectively, of the Fourier transform of the far-

field diffraction from these phase patterns at the focal plane of lens L2. The topological charge values for 

the phase structures in the first, second, and third columns are 0, 1, and 3, respectively, while the radial 

scaling parameter is fixed at 1 mm. Both experimental and simulation results indicate that variations in the 

topological charge do not affect the diameter of the PVBs. 
 

 

Figure 7. Influence of topological charge on PVB arrays for different symmetry orders N = 1, 2, 3, 4. Top 

row: phase masks applied to the SLM. Middle row: simulated intensity distributions from the Fourier 

transform of the modulated beams. Bottom row: corresponding experimental results recorded at the focal 

plane of lens L2. The topological charges for the phase structures in the first, second, and third columns 

are 0, 1, and 3, respectively, with a fixed radial scaling parameter of 1 mm. The results show that 

changing the topological charge does not affect the beam diameter. 

 

Conclusion 

In summary, we have demonstrated an effective experimental approach for generating circular arrays of  

PVBs using an axicon embedded within SAPPSs. By modulating a Gaussian beam with tailored phase 

patterns and applying Fourier transformation through a lens, we successfully produced structured PVB 

arrays with controllable topological charges and beam profiles. 

Our results confirm that the radial scaling parameter directly influences the diameter and ring thickness of 
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the PVBs, while the topological charge affects the internal phase structure without altering the beam size. 

The close agreement between simulation and experimental results validates the robustness and flexibility 

of the proposed method. 

This work offers a versatile platform for creating structured light fields and paves the way for applications 

in optical manipulation, high-resolution imaging, parallel beam shaping, and light–matter interaction 

studies where control over beam topology and geometry is essential. 

 

Acknowledgement 

 

This study was supported by the Institute for Advanced Studies in Basic Sciences (No. 

G2025IASBS12632) and Center for International Scientific Studies and Collaboration (CISSC) of Iran 

(No. 4020667). 
 

References 

 

[1] L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the 

transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, vol. 45, no. 11, p. 8185, 1992. 

[2] J. Y. Bae, Y. G. Kim, H. W. Lee, J. H. Sung, and C. M. Kim, "Generation of low-order Laguerre-

Gaussian beams using hybrid-machined reflective spiral phase plates for intense laser-plasma 

interactions," Results Phys., vol. 19, p. 103499, 2020. 

[3] T. Yu, Y. Ma, P. Zhou, H. Zhang, and L. Si, "The generation and verification of Bessel-Gaussian beam 

based on coherent beam combining," Results Phys., vol. 16, p. 102872, 2020. 

[4] C. Lyu, Y. Li, S. Wang, and Y. Wang, "Generation of diffraction-free Bessel beams based on combined 

axicons," Opt. Laser Technol., vol. 164, p. 109548, 2023. 

[5] X. Li, Q. Zhao, P. Zhang, L. Wang, and B. Gu, "Controllable mode transformation in perfect optical 

vortices," Opt. Express, vol. 26, no. 2, pp. 651–662, 2018. 

[6] H. Yan, Z. Wang, Y. Li, J. Wang, and Y. Zhang, "Free-space propagation of guided optical vortices 

excited in an annular core fiber," Opt. Express, vol. 20, no. 16, pp. 17904–17915, 2012. 

[7] X. Tao, Y. Li, H. Wang, and C. Xie, "Generation of perfect vortex beams with complete control over 

the ring radius and ring width," Photonics, vol. 10, no. 12, 2023. 

[8] I. Heller, G. Sitters, O. D. Broekmans, C. Schäffer, and E. J. G. Peterman, "STED nanoscopy combined 

with optical tweezers reveals protein dynamics on densely covered DNA," Nat. Methods, vol. 10, no. 9, 

pp. 910–916, 2013. 

[9] X. Qiu, F. Li, W. Zhang, Z. Zhu, and L. Chen, "Spiral phase contrast imaging in nonlinear optics: seeing 

phase objects using invisible illumination," Optica, vol. 5, no. 2, pp. 208–212, 2018. 

[10] C. Liu, "Vortex beam and its application in optical tweezers," in J. Phys.: Conf. Ser., vol. 1549, no. 3, 

2020. 

[11] J. Yu, C. Zhou, Y. Lu, and J. Wang, "Circular Dammann gratings for enhanced control of the ring 

profile of perfect optical vortices," Photonics Res., vol. 8, no. 5, pp. 648–658, 2020. 

[12] J. Wang, J. Yang, I. M. Fazal, N. Ahmed, and A. E. Willner, "Terabit free-space data transmission 

employing orbital angular momentum multiplexing," Nat. Photonics, vol. 6, no. 7, pp. 488–496, 2012. 

[13] S. Fu, T. Wang, S. Zhang, Z. Zhang, and Y. Qin, "Experimental demonstration of free-space multi-

state orbital angular momentum shift keying," Opt. Express, vol. 27, no. 23, pp. 33111–33119, 2019. 



63 
 

[14] M. Samadzadeh, P. Y. Moghadam, S. Rasouli, and D. Hebri, "Multiplying vortex beams by diffraction 

from almost periodic structures: Theory and experiment," Appl. Phys. Lett., vol. 124, no. 20, 2024. 

[15] D. Hebri and S. Rasouli, "Diffraction from two-dimensional orthogonal nonseparable periodic 

structures: Talbot distance dependence on the number theoretic properties of the structures," J. Opt. Soc. 

Am. A, vol. 36, no. 2, pp. 253–263, 2019. 

[16] P. Y. Moghadam, D. Hebri, S. Rasouli, and M. S. M. Homayoon, "Three-dimensional optical multiple 

trapping using pure amplitude octagonal almost periodic structures," Opt. Express, vol. 31, no. 26, pp. 

43490–43505, 2023. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

Part Four 

 

Oral presentations 
In-Person 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

 

 

                                         International Conference on Holography and its Applications ththe 4 of sProceeding 

 18 to 19 September, 2025, Khazar University, Baku, Azerbaijan.                                                                                     ICHA4(2025)401 

Full paper - Oral 

 

 

Confined Position Dependent Mass Harmonic Oscillator as a Model for an Abrupt Semiconductor 

Heterojunction 

 
Aygun Mammadova 

Institute of physics, ministry of science and education of Azerbaijan republic, Azerbaijan 

Email: aygun.mammadova@outlook.de 

 

Abstract. Within the position-dependent mass formalism, the Schrödinger equation expressed by the kinetic 

energy operator for abrupt heterojunctions is exactly solved for harmonic oscillator model and the nonlinear 

energy spectrum and the wave functions of stationary states are obtained. 

 

 

 

The study of effective-mass Hamiltonians for abrupt heterojunctions and the associated wave function 

matching conditions has been the subject of intense research. We study confined harmonic oscillator model 

with the Zhu-Kroemer kinetic energy operator as a model of an abrupt heterojunction between two different 

semiconductors, which has been studied in many investigations. Confinement effect as two infinite high walls 

at position values 𝑥 = ±𝑎 is achieved thanks to the effective mass changing with position: 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2−𝑥2
.                                                                                                                                         (1) 

The effective mass 𝑀(𝑥)  varies depending on the coordinate and was proposed by Zhu-Kroemer:  

𝐻̂0
𝑍𝐾  = −

ℏ2

2

1

√𝑀(𝑥)

𝑑2

𝑑𝑥2
1
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                                                                                                                              (2) 

Here V(x)  is the potential of the nonrelativistic linear harmonic oscillator under study, defined as: 

𝑉(𝑥) = {
𝑀(𝑥)𝜔2𝑥2

2
∞,

,     −𝑎<𝑥<𝑎
𝑥=±𝑎.

                                                                                                                            (3) 

and we obtain the following expressions for energy spectrum and the wave functions of the stationary states  
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where 𝐶𝑛
(𝜆)(𝑥) are Gegenbauer polynomials and 𝑐𝑛

𝑍𝐾  is the normalization factor. 
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From the energy spectrum expression was observed that ground state energy depends on confinement 

parameter a and angular frequency ω. This case differs it from other known confined oscillator models and was 

provided probability densities corresponding energy levels aiming to exhibit their behaviour within 

confinement effect. 
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Abstract. The accelerating expansion of the universe remains one of the most profound discoveries in 

modern cosmology, motivating a wide class of dark energy models to explain it. Among these, the 

holographic dark energy (HDE) model, which is based on the holographic principle of quantum gravity, 

offers a fascinating framework for explaining cosmic acceleration in the late time. In this paper, we 

jointly analyze recent cosmological datasets, such as gamma-ray burst (GRB) distance indicators, 

cosmic chronometer (CC)measurements of the Hubble parameter, and Type Ia supernovae from the 

Pantheon sample, to present observational constraints on HDE models. We constrain the HDE 

parameters using Markov Chain Monte Carlo methods and a Bayesian statistical framework. Our 

findings show that late-time cosmic acceleration can still be explained by HDE models. These findings 

highlight how crucial holographic methods are for examining the nature of cosmic acceleration and dark 

energy. 
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Abstract. We obtain by functional method, in exact closed form, both normalized bound state and 

scattering state wave functions and discrete and continuous spectra for the Schrodinger equation with 

hyperbolic Pöschl-Teller potential 𝑉 =
𝑎

sinh2𝛼𝑥
−

𝑏

cosh2𝛼𝑥
 , where 𝑏 > 𝑎 > 0 and 0 < 𝑥 < ∞. These 

wave functions are derived in terms of the Jacobi polynomials 𝑃𝑛
(𝛼.𝛽)

(−𝑥) with the domain 1 < 𝑥 < ∞. 
𝛽 > −1 and 𝛼 + 𝛽 < −2𝑁 − 1. We show that the hyperbolic and the trigonometric Pöschl-Teller 

potential wells problems are equivalent to the linear singular oscillator models with the position-

dependent mass studied in [9]. 

 
 

1 Introduction 

 

In both nonrelativistic and relativistic quantum mechanics, potential models play a key role in studying the 

physical properties of micro-objects [1-3]. Potential models are based on wave equations, which are the 

fundamental equations of motion of quantum mechanics. These are the nonrelativistic Schrödinger equation, 

the relativistic Klein-Gordon equation, the Dirac equation, and the equation of motion of the finite-difference 

version of relativistic quantum mechanics (see, for example, [4] and the literature therein). There are a variety 

of well-known physically significant quantum-mechanical potentials. Many of them are phenomenological. 

For example, the Hulthen potential, the Morse potential, the Rosen-Morse potential, the Kratzer potential, the 

trigonometric and hyperbolic Pöschl-Teller potentials (see, for example, [1-3]), etc. Many of these interaction 

potentials have not only many successful applications but also the other important property that they are exactly 

solvable in the framework of nonrelativistic and relativistic quantum theories (at least in the case 𝑙 = 0). 

       In [5] Barut et al. used an algebraic method in the one-dimensional case to exactly solve the Schrödinger 

equation for the Pöschl-Teller hyperbolic potential 

𝑉PT(𝑥) =
𝑎

sinh2𝛼𝑥
−

𝑏

cosh2𝛼𝑥
 ,  0 < 𝑥 < ∞                                                                                                          (1) 

and found both discrete and continuous spectrum, bound state and scattering wavefunctions. Here the 

parameters 𝑎 and 𝑏 are relevant to the potential depth, while real positive parameter α describes the range of 

the potential. For the special case 𝑎 = 0 was this problem solved before in [1, 6]. In a paper [7] ), it was shown 

that the sl(4, ℝ) Lie algebra has a useful application to the hyperbolic Pöschl-Teller equation. 

       Hyperbolic Pöschl–Teller potential is an important diatomic molecular potential. This potential has been 

carried out widely in the quantum physics (see, for example, [8] and Ref.s there).  
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       Our main goal here is to solve exactly one-dimensional Schrödinger equation with hyperbolic Pöschl–

Teller potential (1) by a simpler and more direct functional method. In contrast to [5], we find a compact 

expression for the wave functions of the system under consideration. 

       On the other hand, it should be noted that central and non-central potential models with coordinate-

dependent mass have found wide application in various fields of theoretical physics over the past few decades 

[9–22]. This is primarily due to the fact that they can, for example, explain well the electronic properties of 

semiconductors [10, 11], quantum wells, quantum wires and quantum dots [12, 13], the graded alloys and 

semiconductor heterostructures [10], optical properties of a spherical quantum dot [14,15] and so on.  

       In this regard, we also note that in a recent paper [9], the authors constructed two exactly solvable semi-

infinite and infinite models of a singular one-dimensional quantum oscillator with coordinate-dependent 

masses within the framework of nonrelativistic quantum mechanics. The first model of a singular oscillator 

corresponds to the following mass function 

𝑀(𝑥) =
𝜈2𝑚0

𝜈2+𝑥2
 . 𝜈 > 0. −∞ < 𝑥 < ∞.                                                                                                                (2)  

and the second model corresponds to the following mass function 

𝑀(𝑥) =
𝜈2𝑚0

𝜈2−𝑥2
 . 𝜈 > 0. 0 < 𝑥 < 𝜈,                                                                                                                     (3)  

       Another goal of our work is to show that the hyperbolic Pöschl–Teller potential well problem is equivalent 

to the first model, but the trigonometric Pöschl–Teller potential well problem is equivalent to the second model 

of a linear singular oscillator. 

       This paper is organized as follows. In Section 2 we обсуждаем физические характеристики the 

hyperbolic Pöschl-Teller potential well (1). The normalized bound state wave functions and the normalized 

scattering state wave functions are obtained in this Section. In Section 3 показано, что the hyperbolic Pöschl-

Teller potential well problem можно рассматривать как модель сингулярного осциллятора с зависящей 

от координаты массой 𝑀(𝑥) (2). The concluding remarks are given in Section 4. In the Appendix, the 

equivalence of the trigonometric Pöschl-Teller potential well problem and the model of a singular oscillator 

with coordinate-dependent mass 𝑀(𝑥) (3) is established. 

 

2 Hyperbolic Pöschl–Teller 

 

One starts from the Schrodinger equation with the hyperbolic Pöschl-Teller potential (1) 

(−
ℏ2

2𝑚
𝜕𝑥
2 +

𝑎

sinh2𝛼𝑥
−

𝑏

cosh2𝛼𝑥
)𝜓(𝑥) = 𝐸𝜓(𝑥),                                                                                                 (4) 

Note that equation (4) has both discrete and continuous energy spectra only when  

 𝑏 > 𝑎 > 0,                                                                                                                                                       (5) 

In other cases, we obtain only a continuous spectrum. We will solve equation (4) in case (5). In this regard, we 

note that the potential (1) has a minimum at 

𝑥1 =
1

2𝛼
ln

√𝑏
4
+ √𝑎
4

√𝑏
4
− √𝑎
4                                                                                                                                               (6) 

with value  

 𝑉PTmin = 𝑉PT(𝑥1) = −(√𝑏 − √𝑎)
2
,                                                                                                               (7) 

 

This is the depth of the Pöschl-Teller potential well. The function (1) has zero at point   

  𝑥0 =
1

2𝛼
ln
√𝑏+√𝑎

√𝑏−√𝑎
 . (𝑥0 < 𝑥1).                                                                                                                          (8) 

       We rewrite the wave function 𝜓 in the form 
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 𝜓(𝑥) = √cosh𝛼𝑥 Φ(𝑥),                                                                                                                                  (9) 

 

By next defining 

 𝜀 =
2𝑚𝐸

ℏ2
+
𝛼2

4
.  𝑎′ =

2𝑚𝑎

ℏ2
, 𝑏′ =

2𝑚𝑏

ℏ2
+
𝛼2

4
 ,                                                                                                     (10) 

one obtains from the above an equation for Φ: 

  Φ′′(𝑥) + 𝛼tanhα𝑥Φ′(𝑥) + (𝜀 −
𝑎′

sinh2𝛼𝑥
+

𝑏′

cosh2𝛼𝑥
)Φ(𝑥) = 0,                                                                  (11) 

 

Since potential (1) satisfies the following limit relationslim
𝑥→0

𝑉PT(𝑥) = ∞ and lim
𝑥→∞

𝑉PT(𝑥) = 0, then for 𝐸 < 0 

the energy spectrum will be discrete, and for 𝐸 > 0 will be continuous. Let us consider these cases separately. 

 

2.1. Discrete spectrum. Bound State Solutions 

 

  In terms of the variable 𝑡 = sinh2𝛼𝑥 (0 < 𝑡 < ∞ ) equation (11) takes the form 

 Φ′′(𝑡) +
𝜏̃(𝑡)

𝜎(𝑡)
Φ′(𝑡) +

𝜎̃(𝑡)

𝜎2(𝑡)
Φ(𝑡) = 0.                                                                                                             (12) 

where  𝜏̃ =
1

2
+
3

2
𝑡.  𝜎 = 𝑡(1 + 𝑡). 𝜎̃ = 𝑐2𝑡

2 + 𝑐1𝑡 − 𝑐0 and 

                                                          𝑐2 =
𝑚𝐸

2ℏ2𝛼2
+

1

16
 .  

                                       𝑐1 = 𝑐2 − 𝑐0 +
𝑚𝑏

2ℏ2𝛼2
+

1

16
 . 𝑐0 =

𝑚𝑎

2ℏ2𝛼2
 ,                                                                    (13) 

We seek the solution of equation (12) in the form 

 Φ(𝑡) =  𝜑(𝑡)𝑦(𝑡).  𝜑(𝑡) = 𝑡𝐴(1 + 𝑡)𝐵,                                                                                                          (14) 

From the conditionslim
𝑡→0
𝜑(𝑡) = 0 and lim

𝑡→∞
𝜑(𝑡) = 0 (the conditions of square integrability of the wave 

function) we obtain that 𝐴 > 0 and 𝐴 + 𝐵 < 0. Therefore, 𝐵 < 0. After some simple calculations for the 

function 𝑦 ≡ 𝑦(𝑡) (14) we obtain the following equation 

 

                                      𝑦′′(𝑡) +
𝜏(𝑡)

𝜎(𝑡)
𝑦′(𝑡) +

𝜎̅(𝑡)

𝜎2(𝑡)
𝑦(𝑡) = 0.  

                        𝜏(𝑡) = 2𝐴 +
1

2
+ (2𝐴 + 2𝐵 +

3

2
) 𝑡, 𝜎(𝑡) = 𝜇2𝑡

2 + 𝜇1𝑡 + 𝜇0.                                                 (15) 

 

Here the coefficients 𝜇2. 𝜇1 and 𝜇0 are equal 

𝜇2  = с2 +
1

2
(𝐴 + 𝐵) + (𝐴 + 𝐵)2. 

𝜇1  = с1 +
1

2
𝐵 + 2𝐴(𝐴 + 𝐵). 

                                                        𝜇0  = −с0 −
1

2
𝐴 + 𝐴2.                                                                            (16) 

 

and the parameters 𝐴 and 𝐵 are arbitrary for now. We will now choose them so that the condition 𝜎(𝑡) =
𝜆𝜎(𝑡). 𝜆 = const is satisfied. From this condition we obtain the following equalities  

𝜇2  = 𝜇1  = 𝜆 . 𝜇0 = 0,                                                                                                                                      (17) 

First, from the equality  𝜇0 = 0 we find the parameter 𝐴, and then from the equality 𝜇2  − 𝜇1 = 0 we find the 

parameter 𝐵, We have: 

𝐴 =
1

4
+√

1

16
+ 𝑐0 ,  𝐵 = −√𝑐0 + с1 − с2 ,                                                                                                      (18) 
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or, taking into account (13), we find  

𝐴 =
1

4
+√

1

16
+

𝑚𝑎

2ℏ2𝛼2
 ,  𝐵 = −√

1

16
+

𝑚𝑏

2ℏ2𝛼2
 .                                                                                                     (19) 

For 𝜆 we choose the expression 𝜆 = 𝜇2  = с2 +
1

2
(𝐴 + 𝐵) + (𝐴 + 𝐵)2. As a result, for the function 𝑦(𝑡) we 

obtain an equation of hypergeometric type 

𝑡(1 + 𝑡)𝑦′′(𝑡) + [2𝐴 +
1

2
+ (2𝐴 + 2𝐵 +

3

2
) 𝑡]𝑦′(𝑡) + 𝜆𝑦(𝑡) = 0,                                                                  (20) 

       Let's find a polynomial solution to this equation in two ways. 

a) First way. In equation (20) we make a change of variable 𝑡 = −𝑧, i.e. 𝑧 = sinh2𝛼𝑥,  Then we get 

𝑧(1 − 𝑧)𝑦′′(−𝑧) + [2𝐴 +
1

2
− (2𝐴 + 2𝐵 +

3

2
) 𝑧] 𝑦′(−𝑧) − 𝜆𝑦(−𝑧) = 0,                                                         (21) 

Let us now compare equation (21) with the hypergeometric equation [1] 

 𝑧(1 − 𝑧)𝑢′′(𝑧) + [𝛾1 − (𝛼1 + 𝛽1 + 1)𝑧]u
′(𝑧) − 𝛼1𝛽1𝑢(𝑧) = 0,                                                                   (22) 

The general solution of equation (22) is written as 

𝑢(𝑧) =  𝐶̃1 𝐹12 (𝛼1. 𝛽1;  𝛾1. 𝑧) + 𝐶̃2𝑧
1−𝛾1 𝐹12 (𝛽1 − 𝛾1 − 1. 𝛼1 − 𝛾1 − 1; 2 − 𝛾1. 𝑧).                                       (23) 

 

where 𝛾1 ≠ 0.−1.−2.… Comparison of equations (21) and (22) leads to the equalities 

                                   𝛼1 =
1

4
+ 𝐴 + 𝐵 + √𝐾 .  

                          𝛽1 =
1

4
+ 𝐴 + 𝐵 − √𝐾 , 𝛾1 = 2𝐴 +

1

2
 .                 

                        𝐾 = (𝐴 + 𝐵 +
1

4
)2 − 𝜆 =

1

16
− с2 = −

𝑚𝐸

2ℏ2𝛼2
,                                                                               (24) 

Since 𝐸 < 0, then 𝐾 > 0. In terms of the potential parameters for 𝛼1. 𝛽1 and 𝛾1 we have the expressions 

                      𝛼1 =
1

2
+√

1

16
+

𝑚𝑎

2ℏ2𝛼2
−√

1

16
+

𝑚𝑏

2ℏ2𝛼2
+√−

𝑚𝐸

2ℏ2𝛼2
 , 

                      𝛽1 =
1

2
+√

1

16
+

𝑚𝑎

2ℏ2𝛼2
−√

1

16
+

𝑚𝑏

2ℏ2𝛼2
−√−

𝑚𝐸

2ℏ2𝛼2
 ,                                 

                                      𝛾1 = 1 + √
1

4
+
2𝑚𝑎

ℏ2𝛼2
 ,                                                                                                      (25) 

        Since in our case 1 − 𝛾1 < 0. the second term in (23) diverges at 𝑧 = 0 (or at 𝑥 = 0). Therefore, it must 

be С̃2 = 0. Thus, for the solution of the equation (22) we obtain 

𝑦(−𝑧) =  𝐹12 (𝛼1. 𝛽1; 𝛾1. 𝑧) or 

𝑦(𝑥) =  𝐹12 (𝛼1. 𝛽1;  𝛾1; −sinh
2𝛼𝑥).                                                                                                                   (26) 

In order for the function 𝑦(𝑥) to be a polynomial of degree 𝑛, we must set 

𝛼1 = −𝑛. 𝑛 = 0. 1. 2. 3. …                                                                                                                                   (27) 

This is the condition of energy quantization. From this we obtain that the energy levels of the system under 

consideration are determined by the formula 

𝐸𝑛 = −
2ℏ2𝛼2

𝑚
(𝑛 + 𝐴 + 𝐵 +

1

4
)
2

= −
2ℏ2𝛼2

𝑚
(√

1

16
+

𝑚𝑏

2ℏ2𝛼2
−√

1

16
+

𝑚𝑎

2ℏ2𝛼2
− 𝑛 −

1

2
)

2

,                                     (28) 

There is a finite number of energy levels determined by the condition √𝐾 > 0, i.e. 

𝑛 < √
1

16
+

𝑚𝑏

2ℏ2𝛼2
−√

1

16
+

𝑚𝑎

2ℏ2𝛼2
−
1

2
,                                                                                                                  (29) 

Thus, the desired polynomial solution will have the form 
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𝑦𝑛(𝑥) =  𝐹12 (−𝑛. 𝑛 + 1 + √
1

4
+
2𝑚𝑏

ℏ2𝛼2
−√

1

4
+
2𝑚𝑎

ℏ2𝛼2
;  1 + √

1

4
+
2𝑚𝑎

ℏ2𝛼2
; −sinh2𝛼𝑥),                                     (30)   

Taking into account (9), (14) and (30) we find the wave functions corresponding to the energy levels (28) 

 

𝜓𝑛(𝑥) = 𝐶̃𝑛sinh
2𝐴(𝛼𝑥)cosh2𝐵+1 2⁄ (𝛼𝑥) 𝐹12 (−𝑛. 𝑛 +

1

2
+ 2𝐴 + 2𝐵; 𝛾1; −sinh

2𝛼𝑥).                                 (31) 

 

Note that condition (29) ensures the square integrability of the wave function: ∫ |𝜓𝑛(𝑥)|
2𝑑𝑥 < ∞

∞

0
, 

       b) Second way. In equation (20) we make a change of variable 𝑡 =
𝜉−1

2
, where 𝜉 = 1 + 2sinh2𝛼𝑥. Then 

we get  

 

(𝜉2 − 1)𝑦′′(𝜉) + [2𝐴 − 2𝐵 −
1

2
+ (2𝐴 + 2𝐵 +

3

2
) 𝜉] 𝑦′(𝜉) + 𝜆𝑦(𝜉) = 0,                                                     (32) 

Let us compare this equation with the equation for Jacobi polynomials 𝑦̅(𝑥) = 𝑃𝑛
(𝛼2.𝛽2)(−𝑥) with the domain 

1 < 𝑥 < ∞ and 𝛽2 > −1. 𝛼2 + 𝛽2 < −2𝑁 − 1 [23] 

(𝑥2 − 1)𝑦̅′′(𝑥) + [𝛽2 − 𝛼2 + (𝛼2 + 𝛽2 + 2]𝑦̅
′(𝑥) − 𝜆𝑛𝑦̅(𝑥) = 0.                                                                     (33) 

 

where 𝜆𝑛 = 𝑛(𝑛 + 𝛼2 + 𝛽2 + 1), In case1 ≤ 𝑥 < ∞.  𝛼2 + 𝛽2 < −2𝑁 − 1. 𝛽2 > −1 and 𝑚. 𝑛 ∈ {0. 1. 2. … .
𝑁} these polynomials satisfy the orthogonality condition of the form  

∫ (𝑥 + 1)𝛼2(𝑥 − 1)𝛽2𝑃𝑚
(𝛼2 𝛽2)(−𝑥)𝑃𝑛

(𝛼2 𝛽2)(−𝑥)𝑑𝑥 =
∞

1

 

                                  = −
2𝛼2+𝛽2+1

2𝑛+𝛼2+𝛽2+1

Γ(−𝑛−𝛼2−𝛽2)Γ(𝑛+𝛽2+1)

Γ(−𝑛−𝛼2) 𝑛!
𝛿𝑚𝑛.                                                                    (34)         

(Note. It should be noted that in formula (9.8.3) of the book [23] (p. 217) there is a typo: instead of Г(𝑛 + 𝛼 +

𝛽 + 1)  it should be Г(𝑛 + 𝛽 + 1)). 

From the comparison of (32) and (33) we find that 𝛼2 = 2𝐵 , 𝛽2 = 2𝐴 −
1

2
 and 𝜆 = −𝜆𝑛, Therefore, 𝑦(𝜉) ≡

𝑦𝑛(𝜉) = 𝑃𝑛
(2𝐵.2𝐴−1 2)⁄ (−𝜉) or, in terms of 𝑥, we have 

𝑦𝑛(𝑥) = 𝑃𝑛
(−√

1

4
+
2𝑚𝑏

ℏ2𝛼2
.√
1

4
+
2𝑚𝑎

ℏ2𝛼2
)

(−1 − 2sinh2𝛼𝑥).                                                                                                   (35) 

From the equality 𝜆 = −𝜆𝑛 it follows for the energy, as it should be, the same formula (28), and from the 

inequality 𝛼2 + 𝛽2 < −2𝑁 − 1 we obtain the condition 𝑁 < −𝐴 − 𝐵 −
1

4
 . which coincides with the condition 

(29). 

       We can now express the wave functions (31) through the Jacobi polynomials  

𝜓𝑛(𝑥) = 𝐶𝑛sinh
2𝐴(𝛼𝑥)cosh2𝐵+1 2⁄ (𝛼𝑥)𝑃𝑛

(2𝐵.2𝐴−1 2)⁄ (−1 − 2sinh2𝛼𝑥).                                                           (36) 

where the parameters 𝐴 and 𝐵 are given in (18). 

The advantage of writing the wave function in terms of Jacobi polynomials is that using the orthogonality 

relation (34) we can easily find the normalization constant: 
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𝐶𝑛 = √−
2𝛼(2𝑛+2𝐴+2𝐵+1 2)Γ(−𝑛−2𝐵) 𝑛!⁄

Γ(−𝑛−2𝐴−2𝐵+1 2⁄ )Γ(𝑛+2𝐴+1 2⁄ )
.                                                                                                             (37) 

 Let us also present the relationship between the normalization constants 𝐶̃𝑛 and 𝐶𝑛: 

𝐶̃𝑛 = 𝐶𝑛
Γ(𝑛+2𝐴+1 2)⁄

Γ(2𝐴+1 2)⁄ 𝑛!
,                                                                                                                                             (38) 

       We emphasize that, taking into account the connection 𝜅𝐵 = 2𝐴 and 𝜆𝐵 = −2𝐵 − 1 2⁄  between the 

parameters for the hyperbolic Pöschl-Teller potential (1) of the work of Barut et al [5] and this work, we can 

verify that the formulas for the energy coincide. 

 

2.2.  Continuous spectrum. Scattering State Solutions 

 

The spectrum of positive eigenvalues of the energy for the system under consideration is continuous and 

extends from zero to infinity. We now turn to solve Eq. (11) for непрерывный спектр. Similarly, we make 

the same variable  𝑡 = sinh2𝛼𝑥 (0 < 𝑡 < ∞ ), define  

𝑘 =  √2𝑚𝐸/ℏ,  𝑞 =
1

4
+ 𝐴 + 𝐵 =

1

2
+√

1

16
+

𝑚𝑎

2ℏ2𝛼2
−√

1

16
+

𝑚𝑏

2ℏ2𝛼2
< 0.                                                      (39)                

Quantities 𝛼1. 𝛽1 and √𝐾, defined by the formula (24), are now complex: 

 

                                       𝛼1 =
1

4
+ 𝐴 + 𝐵 + 𝑖 𝑘 (2𝛼)⁄ .  

                                       𝛽1 =
1

4
+ 𝐴 + 𝐵 − 𝑖 𝑘 (2𝛼)⁄ ,  

                                 √𝐾 = 𝑖 𝑘 (2𝛼)⁄ ,                                                                                                          (40) 

For the scattering states, 𝐸 > 0 and 𝑘 > 0. As a result, we can get the wave function of the scattering states as 

                          𝜓(𝑥) = 𝐶sinh2𝐴𝛼𝑥cosh2𝐵+1 2⁄ 𝛼𝑥 × 

 

                 × 𝐹12 (𝑞 + 𝑖 𝑘 (2𝛼)⁄ . 𝑞 − 𝑖 𝑘 (2𝛼)⁄ ;  2𝐴 +
1

2
; −sinh2𝛼𝑥),                            (41) 

where 𝐶 is a normalization constant. For the wave function (41) we have 𝜓(𝑥) → 0 при 𝑥 → 0, 
        Let us study its asymptotic expression for large 𝑥. To this end, using a recurrence relation of the 

hypergeometric function [1]  

𝐹12 (𝛼. 𝛽;  𝛾; 𝑧) =
Γ(𝛾)Γ(𝛽 − 𝛼)

Γ(𝛽)Γ(𝛾 − 𝛼)
(−𝑧)−𝛼 𝐹12 (𝛼. 𝛼 + 1 − 𝛾;  𝛼 + 1 − 𝛽; 1 𝑧⁄ ) + 

              +
Γ(𝛾)Γ(𝛼−𝛽)

Γ(𝛼)Γ(𝛾−𝛽)
(−𝑧)−𝛽 𝐹12 (𝛽. 𝛽 + 1 − 𝛾;  𝛽 + 1 − 𝛼; 1 𝑧⁄ )                                                                  (42) 

and 𝐹12 (𝛼. 𝛽;  𝛾; 0) = 1, we have 

𝐹12 (𝛼1. 𝛽1;  𝛾1; −sinh
2𝛼𝑥)

𝑥→∞
→  Γ(𝛾1)𝑒

−2𝑞𝛼𝑥(𝐷𝑒−𝑖𝑘𝑥 + 𝐷∗𝑒𝑖𝑘𝑥),                                                                    (43) 

where  

𝐷 =
1

4

Γ(𝛽1−𝛼1)

Γ(𝛽1)Γ(𝛾1−𝛼1)
=
1

4

Γ(−𝑖𝑘 𝛼⁄ )

Γ(𝑞−𝑖𝑘 2𝛼⁄ )Γ(𝛾1−𝑞−𝑖𝑘 2𝛼⁄ )
 ,                                                                                                                   (44) 

By setting 𝐷 = |𝐷|𝑒−𝑖𝛿 we have 

𝐹12 (𝛼1. 𝛽1;  𝛾1; −sinh
2𝛼𝑥)

𝑥→∞
→  2 |𝐷|Γ(𝛾1)𝑒

−2𝑞𝛼𝑥 cos(𝑘𝑥 + 𝛿),                                                                            (45) 

Substituting this formula into Eq. (39), we finally obtain 

𝜓(𝑥) ≡ 𝜓𝑘(𝑥)
𝑥→∞
→  

1

2
𝐶|𝐷|Γ(𝛾1) cos(𝑘𝑥 + 𝛿),                                                                                                   (46) 
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By comparing this formula with the general boundary condition of the wavefuntions normalized by the delta 

function of 𝑝 (the momentum of the particle at infinity) [1] 𝜓𝑝(𝑥) ≈ √2 𝜋ℏ⁄ cos(𝑘𝑥 + 𝛿). we obtain the 

normalization constant as follows 

𝐶 = 8√2 𝜋ℏ⁄
1

Γ(2𝐴+1 2⁄ )
|
Γ(𝐴+𝐵+1 4⁄ −𝑖𝑘 2𝛼⁄ )Γ(𝐴−𝐵+1 4⁄ −𝑖𝑘 2𝛼⁄ )

Γ(−𝑖𝑘 𝛼⁄ )
|,                                                                                (47) 

At the end of this section we note that according to (43) we obtain the reflection and transmission coefficients 

as 𝑅 = 1 and 𝑇 = 0. i.e. due to the infinite potential wall at the point 𝑥 = 0 the particle is completely reflected 

from the wall. 

 

3 Hyperbolic Pöschl-Teller potential well as a model of the singular oscillator with position-dependent 

mass 

 

       In this section we will show that the hyperbolic Pöschl-Teller potential well (4) can be considered as a 

model of a singular oscillator with coordinate-dependent mass 𝑀(𝑥) (2), proposed in [9]. To do this, it is 

sufficient to verify that the Schrödinger equations describing these models coincide in form after some 

transformations. For example, we transform the Schrödinger equation 

[𝜕𝑥
2 −

𝑀′

𝑀
𝜕𝑥 +

2𝑀

ℏ2
(𝐸 − 𝑉)]𝜓(𝑥) = 0                                                                                                                      (48) 

for the model of a singular oscillator with mass 𝑀(𝑥) (2) and potential 

𝑉 =
𝑀(𝑥)𝜔2𝑥2

2
+

𝑔

𝑥2
=
𝑚0𝜈

2𝜔2𝑥2

2(𝜈2+𝑥2)
+

𝑔

𝑥2
 .  0 < 𝑥 < ∞                                                                                                   (49) 

to the form (11). This is easy to do if we pass to a new variable 𝑥 = 𝜈 sinh𝛼𝑡, Then we obtain an equation that 

coincides in form with (11) 

𝜓′′(𝑡) + 𝛼tanhα𝑡𝜓′(𝑡) + (𝜀1 −
𝑎1
′

sinh2𝛼𝑡
+

𝑏1
′

cosh2𝛼𝑡
)𝜓(𝑡) = 0,                                                                                (50) 

Here the following quantities are analogous to (10) 

𝜀1 =
2𝑚0𝛼

2𝜈2

ℏ2
𝐸 − 𝑏1

′ ,  𝑎1
′ =

2𝑚0𝛼
2𝑔

ℏ2
,  𝑏1

′ =
𝑚0
2𝛼2𝜔2𝜈4

ℏ2
.                                                                                          (51)      

The analogues of the parameters (18) will be 

                      𝐴1 =
1

4
+√

1

16
+

𝑎1
′

4𝛼2
=
1

4
+
𝑑

2
 .  ,  𝐵1 = −

1

2𝛼
√𝑏1

′ = −
1

2
𝜆0
2𝜈2.                       

                                       𝑑 =
1

2
√1 +

8𝑚0𝑔

ℏ2
 ,   𝜆0 = √

𝑚0𝜔

ℏ
 .                                                                                        (52) 

       Using this analogy we can find the energy spectrum and the wave function for the singular oscillator model 

(48). As an example, we derive from formulas (28), (51) and (52) the discrete energy spectrum (1) of [9]. We 

easily obtain that 

𝐸𝑛
so =

2ℏ2

𝑚0𝜈2
[
1

16
− (𝑛 + 𝐴1 + 𝐵1 +

1

4
)
2

] +
𝑚0𝜔

2𝜈2

2
, 𝑛 < −𝐴1 − 𝐵1 −

1

4
,                                                              (53) 

or                        
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𝐸𝑛
so =

ℏ2

2𝑚0𝜈2
[
1

4
− (2𝑛 + 𝑑 + 1 − 𝜆0

2𝜈2)2] +
𝑚0𝜔

2𝜈2

2
, 𝑛 <

1

2
(𝜆0
2𝜈2 − 𝑑 − 1),                                                      (54)                       

In the same way, we can easily find the explicit form of the wave function of the singular oscillator model.  

 

4 Conclusions 

 

We obtained exactly both bound state and scattering state solutions to the Schrödinger equation with the 

hyperbolic Pöschl–Teller potential. In this case, we used the functional method. It is shown that the solutions 

can be expressed by the hypergeometric functions 𝐹12 (𝛼. 𝛽;  𝛾; 𝑧), We also expressed the bound state wawe 

functions through Jacobi polynomials 𝑃𝑛
(𝛼.𝛽)(−𝑥), where 𝑥 > 1, We have shown that the hyperbolic Pöschl-

Teller potential well can be regarded as the potential of a singular oscillator with coordinate-dependent mass 

𝑀(𝑥) =
𝜈2𝑚0

𝜈2+𝑥2
 . 𝜈 > 0, Both of these potentials admit of a finite number of bound states. 

       In this connection, we note that other well-known exactly solvable quantum mechanical models can also 

be interpreted as new quantum mechanical systems with coordinate-dependent mass. For example, in [24] it 

was shown that the exact solution of the angular part of the Schrödinger equation with one of the Hautot 

potentials corresponds to an exactly solvable model of a linear harmonic oscillator with coordinate-dependent 

mass in a homogeneous gravitational field. Another example is given in the Appendix. 

Appendix  

       In [9] we have developed a second exactly solvable model of a linear singular harmonic oscillator with 

mass dependent on the coordinates (3). This model corresponds to the potential 

𝑉 =
𝑀(𝑥)𝜔2𝑥2

2
+

𝑔

𝑥2
≡
𝑚0𝜈

2𝜔2𝑥2

2(𝜈2−𝑥2)
+

𝑔

𝑥2
.  0≤ 𝑥 ≤ 𝜈,                                                                                                  (A.1) 

 The Schrödinger equation for model (A.1) is written as 

(𝜈2 − 𝑥2)
𝑑2𝜓

𝑑𝑥2
− 2𝑥

𝑑𝜓

𝑑𝑥
+ (

2𝑚0𝜈
2𝐸

ℏ2
−
2𝑚0𝜈

2𝑔

ℏ2𝑥2
−
𝜆0
4𝜈4𝑥2

𝜈2−𝑥2
)𝜓 = 0.                                                            (A.2) 

We show that this model (A.1) can be interpreted as a trigonometric Pöschl-Teller potential well. The 

trigonometric Pöschl-Teller equation is 

{−
ℏ2

2𝑚0

𝑑2

𝑑𝑥2
+
1

2
𝑉0 [

𝜅(𝜅−1)

sin2𝛼𝑥
+
𝜆(𝜆−1)

cos2𝛼𝑥
]}𝜓 = 𝐸𝜓.                                                                                    (A.3) 

Here, 𝜅 > 1, 𝜆 > 1 and the notation 𝑉0 =
ℏ2𝛼2

𝑚0
 is introduced for simplicity. In the region 0 ≤ 𝑥 ≤

𝜋

2𝛼
, where 

the potential becomes infinitely high at the borders of this region, the wavefunction has to possess the following 

boundary condition: 

𝜓(0) = 𝜓 (
𝜋

2𝛼
) = 0.                                                                                                                                    (A.4) 

The solution to equation (A.3) was found in [3, 25].  
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       In equation (A.2) we make a change of variable𝑥 = 𝜈 sin 𝛼𝑧. where now the condition 0 ≤  𝑧 ≤
𝜋

2𝛼
 holds. 

Then, one obtains that 

[
𝑑2

𝑑𝑧2
− 𝛼 tan𝛼𝑧

𝑑

𝑑𝑧
+ 𝛼2 (𝑐0 + 𝑐2 −

𝑐1

sin2𝛼𝑧
−

𝑐2

cos2𝛼𝑧
)]𝜓 = 0,                                                            (A.5) 

where 𝑐0 =
2𝑚0𝜈

2𝐸

ℏ2
, 𝑐1 =

2𝑚0𝑔

ℏ2
,  𝑐2 = 𝜆0

4𝜈4. Then, we look for the solution of (A.5) as 

𝜓 =
1

√cos𝛼𝑧
∙ Φ(𝑧).                                                                              (A.6) 

Now, one observes that equation for 𝛷(𝑧) coincides with equation (A.3) 

[
𝑑2

𝑑𝑧2
+ 𝛼2 (𝑐0 + 𝑐2 +

1

4
) − 𝛼2 (

𝑐1

sin2𝛼𝑧
+

𝑐2+
1

4

cos2 𝛼𝑧
)]Φ(𝑧) = 0.                                                 (A.7) 

The wave function Φ(𝑧) also satisfies a boundary condition of the form (A.4). 

       Thus, we have shown that a singular harmonic oscillator with coordinate-dependent mass (A.2) 

and the trigonometric Pöschl‐Teller potential well problem (A.3) are directly connected through the elegant 

mathematical transform. 
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Abstract. It is known that hadrons, including nucleons and their excited states, are not pointlike particles 

and have their own internal structure. Electromagnetic interaction plays an important role in studying the 

internal structure of nucleons. Because the form factors in elastic and inelastic scatterings and the 

determination of these structure functions in deep inelastic scattering of electrons are a rich source of 

information for studying the structure of the nucleon. 

 

 

After determining the electromagnetic form factors 𝐹1.2(𝑄
2) for the nucleon-excited nucleon transition, 

we can determine the electric and magnetic Sachs form factors, which are alternative Lorentz invariant 

quantities for the proton and neutron constituting the nucleon for the 𝑁 + 𝛾∗ → 𝑁∗(1440, 1710, 1535) 

transitions. Using these form factors, the charge and magnetic radii of the nucleon are determined framework 

hard wall AdS/QCD model as follows: 

𝑟𝐸.𝑀
2 = −6

𝑑𝐺𝐸.𝑀(𝑄
2)

𝑑𝑄2
|
𝑄2=0

 

We have shown the differences between our results and experimental data for the unexcited nucleons 

are small and compared with the data [2]. Also, the comparison of soft-wall model results with the ground state 

nucleons shows on small differences between them. This allows us to make conclusion that the radii have a 

little change on excitation. 
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Abstract. We study the nonrelativistic limits of the DSR theories. By investigating the nonrelativistic 

limits of the corresponding Dirac equations in DSR, we study the particle and the antiparticle in these 

theories.  The difference between particle's and the antiparticle's mass is proportional to   mc^2/E_p  in 

the first order of approximation. (E_p  is the Planck energy) These  different masses lead to the violation 

of CPT invariance. We use this ratio to find an upper limit on the photon mass. Also, we will obtain a 

lower bound on the amount of E_p.  Furthermore, we will discuss the consequences of these effects for 

the new physics beyond the standard model and quantum gravity. 
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