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Abstract. I was asked to give a brief review of the black hole-string correspondence [1]
as a warm-up for a longer SITP-group discussion of a recent paper by Chen, Maldacena,
and Witten [2]. Here are my notes in written form.
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1 The Problem
In 1993 I was invited by the Rutgers string-theory group to give a seminar on black holes
and strings. I had thought about the relation between the two subjects a lot in the previous
months. My picture was that the stretched horizon of a black hole is a thin layer of wiggly
strings and that the entropy of the black hole is simply the entropy of those wiggles. I kept
drawing the same picture which looked something like this.

Figure 1:

What I really wanted was to use this picture to give a microscopic estimate of the entropy
of a Schwarzschild black hole1 and show that it is proportional to the area of the horizon
in Planck units. I thought this would make a fine seminar. The problem was that I had no
idea how to do it.

I spent all week before the seminar trying to Figure out a dynamical framework for the
strings trapped by gravity just above the horizon, but I didn’t see a way to do it. But at
the last minute I had an idea:

Adiabatically vary the string coupling constant, or if you like, the background dilaton field
until gravity gets so weak that it can no longer hold the string onto the horizon. When that
happens the black hole should disappear and become a collection of almost free strings. If done
slowly enough the entropy should not change during the course of the process (technically
one would say that entropy is an adiabatic invariant), and we can calculate the original black
hole entropy by using free string theory.

Now while it was clear that when gravity was switched off the black hole would have
to become a collection of free strings, it was less clear how many strings would appear in
the final state. One possibility was a large number of short strings, or maybe a mix of
short strings and longer ones. The prospect of figuring out the quantum dynamics of the
transition seemed very forbidding, but at some point I recalled a paper from the early days
of string theory—I don’t remember who wrote it—showing that the number of states of a
single string of a given total energy is dominated by the states of a single long string. This
meant that on statistical grounds, the final state of the adiabatic transition should be a
single long string. This should make the problem a lot easier.

1At that time the idea that black hole entropy had a microscopic origin in some unitary quantum me-
chanics was largely dismissed by most relativists.
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2 Some Facts
Here are some facts from string theory and gravity that we will need. In what follows we
will hold the string length-scale fixed2 and work in (3 + 1)-dimensions.

The Couplings
The Newton constant and string coupling are related by,

G = g2l2s . (2.1)

The Schwarzschild Radius

RS = MG = Mg2l2s . (2.2)

Ratio of Schwarzschild-radius to String Length
From (2.2),

RS

ls
= Mg2ls. (2.3)

Black Hole Entropy

SBH =
Area

4G

= M2G

= M2g2ls
2 (2.4)

Free String Entropy
It is a fact about strings that both the energy (mass) and entropy Ss are proportional to
the length of the string L (measured along the string). On dimensional grounds,

M =
L

l2s
,

Ss =
L

ls
, (2.5)

implying
Ss = Mls. (2.6)

2All equations are simplified by ignoring multiplicative factors of order unity. There would be no point
in keeping these factors because a chain is no stronger than its weakest link, and there is one step in the
argument that is only accurate to an order 1 numerical factor.
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3 The Black Hole-String Transition
Here is what I imagined the transition from black hole to free string looks like. As the string
coupling decreases the Schwarzschild radius in string units decreases (2.3). No matter what
the initial mass M0 and initial Newton constant G0, eventually the Schwarzschild radius
reaches the string scale, i.e., the size of the typical wiggles. That’s what happens in the
second picture of Figure 2.

Figure 2: Proceeding from left to right: A large black hole with a stringy stretched horizon,
evolves, under adiabatic change of the coupling, to a black hole of string size, and then a
single free string.

The key assumption in 1993 was that any further decrease in the coupling would result
in the black hole being replaced by a single string. Later, the guess that the transition takes
place when the Schwarzschild radius reaches the string scale was put on firm footing by
Horowitz and Polchinski [3].

The Transition Curve
According to the key assumption the transition occurs at RS

ls
= 1, or from (2.3),

M =
1

g2ls
. (3.1)

I’ve shown this as the red curve in the diagram of Figure 3.

This transition curve defines the values “matching points,” i.e., the values of M and g where
the black hole and string descriptions coexist.

The Adiabats
Next let’s construct the “adiabats.” Adiabats, as I learned when I was a mechanical engineer-
ing student, are the curves along which entropy is constant. Let’s begin to the right of the
transition curve—the black hole phase—where the entropy is given by (2.4). The adiabats
are clearly curves of constant Mg, in other words the purple hyperbolas on the M, g chart.
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Figure 3: The red curve is where the black hole-string transitions take place. The purple
hyperbolas to the right of the red curve (the black hole region) are the lines of constant
entropy, i.e., the adiabats.

What happens to the adiabats when they pass to the left of the transition curve? That’s
when the system becomes a free (or almost free) string. In that limit the entropy becomes
independent of the coupling. The adiabats become flat. The simplest assumption was that
the adiabats follow the hyperbolic trajectories until they intersect the transition curve and
then flatten out. With that assumption the mass of a given adiabat when it hit g = 0 is
easy to compute—it’s just the mass where the adiabat intersects the transition curve.

Tracking a Black Hole
Now to the point: start with a black hole whose entropy we want to compute. The mass of
the black hole is M0, the string coupling is g0 and the Newton constant is G0 = g20l

2
s . I’ve

plotted that point as a green dot in Figure 5.

Next, adiabatically decrease g, and follow the black hole along its adiabat until it reaches
the transition curve at the green cross. We want to know the mass and coupling constant
at that point. Here are the equations for the transition curve and the adiabat:

M =
1

g2ls
,

Mg = M0g0. (3.2)

Solving them simultaneously gives the matching point (called the “correspondence point”
by Horowitz and Polchinski [4]),

g2 =
1

M2
0G0

,

Mls = M2
0 g

2
0l

2
s . (3.3)
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Figure 4: The adiabats may be extended into the almost free string region where they
flatten out. The reason is that when the coupling becomes very small the mass of a free
string becomes insensitive to g.

Figure 5: Tracking a black hole: Start with a black hole of mass M0 in a background with
the string coupling being g0 shown as a green dot. We may track it along an adiabat until
it arrives at the transition point shown as a green cross.
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The first equation for g tells us that at the correspondence point it is extremely small if
the black hole mass is large in Planck units. This is important in justifying the free string
approximation.

The Result
The second equation of (3.3) is especially interesting. Using (2.1) and (2.6) it tells us that
the entropy on the adiabat containing the point (M0, g0) is given by

S = M2
0G0. (3.4)

This of course is precisely what we hoped to get: the black hole entropy is given by the
Hawking-Bekenstein formula written in the form of the middle equation in (2.4).

To summarize, what I did was to match the black hole to a free string by adiabatically
transporting the black hole parameters to the matching or correspondence point, and then
calculate the entropy using free string theory. And it worked, giving the right relation
between entropy and black hole mass.

At the time this was the first calculation to show that black hole entropy really does
arise from the counting of quantum states.

4 Entropy and Area
So far I have not even mentioned the area of the horizon. Can we see that the entropy is
related to the area by matching the area of a string (to be defined) to the entropy at the
correspondence point? With the right interpretation we can. I’ll give a very short intuitive
explanation.

Let’s recall a very general fact about black holes: the area of the horizon is exactly the
zero-energy absorption cross section for a massless scalar particle incident on a black hole.
Even away from zero energy the absorption cross section is proportional to the classical
horizon area but with an order 1 coefficient that varies modestly with energy.

If we ignore the long-range Newtonian elastic scattering (which leads to infinite cross
section) then by the optical theorem the absorption cross section (and therefore the horizon
area) is proportional to the imaginary part of the forward scattering amplitude. We can use
this relationship as a definition of the area and extrapolate it to the correspondence point
where we can compute it using string perturbation theory. This was done in [5]. In this
note I’ll give a crude but effective way of estimating the result.

Depict the excited string as a closed random walk on a lattice in the x, y plane. Each
link has a length ls and the total length of the string is L. By a standard argument the
total mass of the string is,

M =
L

l2s
. (4.1)

Now imagine a scalar particle represented by a small string of length ∼ 1. I’ll draw it as a
purple square. The scalar particle moves along the z axis, perpendicular to the x, y plane.
In Figure 6 the setup is illustrated with the excited string in blue and the scalar particle in
purple.

Since at the correspondence point the coupling g is very small we can assume that cross
section is just the sum of the cross sections for the scalar to collide with the individual links
of the excited string.
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Figure 6: A crude theory of the interaction between a highly excited string (blue) and a
massless scalar string (purple).

The individual cross sections are obviously of order g2l2s . The factor l2s must be there for
dimensional reasons. The factor g2 represents the strength of the coupling. It follows that
the total cross section is,

σ =

(
L

ls

)(
g2l2s

)
. (4.2)

Now using (2.1) and (4.1) we can write the cross section as,

σ = MlsG. (4.3)

But according to (2.6) Mls is nothing but the entropy of the string, so (4.3) becomes,

σ = SG,

or, dividing by G and identifying the cross section with the area of the horizon at the
correspondence point, the result is just the Bekenstein relation,

S ∼ A/G. (4.4)

This may seem far from a rigorous demonstration that the cross section is related to the
entropy in the right way, but perturbative string theory allows a rigorous calculation of the
absorption cross section. The calculation was carried out in [5] and gives the same answer.

5 Limits of the Method
The method I used in 1993 was not up to the task of computing the numerical coefficient
in the entropy-mass relation of the entropy-area relation. The main obstacle was the lack
of detailed knowledge of how the mass of the system evolved over the transition region.
In crossing the red line in Figure 5 the adiabat might jump one way or the other which
would introduce a multiplicative uncertainty in the final outcome. What was needed was
a quantitative approach to the details of the transition. The rough arguments I gave were
not sufficient for this purpose, so the precise coefficient of 1/4 in the Bekenstein-Hawking
formula was out of reach.

One approach to the problem was immediately suggested by Vafa right after seminar in
Rutgers. Vafa pointed out that if we applied similar reasoning to supersymmetric extremal
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BPS black holes we could be sure that the adiabats are exactly flat. That approach took a
few years to work, primarily because there was no good example until Strominger and Vafa
cooked up the D1-D5 system. That famously gave the factor of 1/4 but only for extremal
black holes.

Shortly after, Horowitz and Polchinski used the same method that I outlined to suc-
cessfully estimate the entropy of a wide variety of non-extremal string theory black holes,
with and without charge or angular momentum, and in various dimensions [4], but again,
the method was too crude to produce the factor of 1/4. The reason was the same: lack of
a precise theory of the transition region. This led Horowitz and Polchinski to attempt to
build a dynamical theory of the transition [3].

I won’t describe their theory here except to say that it added an ingredient to string
dynamics that had been previously left out. The ingredient was the Newtonian gravitational
attraction between different parts of the long excited string. The thermal fluctuations of the
string (which tend to spread it out in space) were counteracted by gravitational attraction
that tended to pull the string together. All of this was done in a largely classical description
of the string.

Taking account of these competing effects Horowitz and Polchinski gave a better account
of the transition, good enough to justify where the transition takes place, but still not good
enough to compute the numerical factor of 1/4 with any precision.

It was the HP theory [3] that was the subject of the Chen, Maldacena Witten paper [2]
and the group discussion at SITP that I mentioned earlier. As I understand the situation
Chen, Maldacena Witten argued that the HP self-gravitating string is consistent in heterotic
string theory, but there is some obstruction in type II string theory. The paper is technical
but the bottom line is clear—there is still lots more to do to understand the entropy of
generic black holes in string theory. I hope these notes will be useful to anyone who wants
to pursue the subject further.
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